Creat membership Creat membership
Sign in

Forgot password?

Confirm
  • Forgot password?
    Sign Up
  • Confirm
    Sign In
home > search

Now showing items 1 - 3 of 3

  • The transport of water in subduction zones

    Zheng YongFei   Chen RenXu   Xu Zheng   Zhang ShaoBing  

    The transport of water from subducting crust into the mantle is mainly dictated by the stability of hydrous minerals in subduction zones. The thermal structure of subduction zones is a key to dehydration of the subducting crust at different depths. Oceanic subduction zones show a large variation in the geotherm, but seismicity and arc volcanism are only prominent in cold subduction zones where geothermal gradients are low. In contrast, continental subduction zones have low geothermal gradients, resulting in metamorphism in cold subduction zones and the absence of arc volcanism during subduction. In very cold subduction zone where the geothermal gradient is very low (a parts per thousand currency sign5A degrees C/km), lawsonite may carry water into great depths of a parts per thousand currency sign300 km. In the hot subduction zone where the geothermal gradient is high (> 25A degrees C/km), the subducting crust dehydrates significantly at shallow depths and may partially melt at depths of < 80 km to form felsic melts, into which water is highly dissolved. In this case, only a minor amount of water can be transported into great depths. A number of intermediate modes are present between these two end-member dehydration modes, making subduction-zone dehydration various. Low-T/low-P hydrous minerals are not stable in warm subduction zones with increasing subduction depths and thus break down at forearc depths of a parts per thousand currency sign60-80 km to release large amounts of water. In contrast, the low-T/low-P hydrous minerals are replaced by low-T/high-P hydrous minerals in cold subduction zones with increasing subduction depths, allowing the water to be transported to subarc depths of 80-160 km. In either case, dehydration reactions not only trigger seismicity in the subducting crust but also cause hydration of the mantle wedge. Nevertheless, there are still minor amounts of water to be transported by ultrahigh-pressure hydrous minerals and nominally anhydrous minerals into the deeper mantle. The mantle wedge overlying the subducting slab does not partially melt upon water influx for volcanic arc magmatism, but it is hydrated at first with the lowest temperature at the slab-mantle interface, several hundreds of degree lower than the wet solidus of hydrated peridotites. The hydrated peridotites may undergo partial melting upon heating at a later time. Therefore, the water flux from the subducting crust into the overlying mantle wedge does not trigger the volcanic arc magmatism immediately.
    Download Collect
  • Formation and evolution of precambrian continental crust in South China RID C-4781-2008

    Zheng YongFei   Zhang ShaoBing  

    The occurrence of zircons with U-Pb ages of similar to 3.8 Ga and Hf model ages of similar to 4.0 Ga in South China suggests the existence of the Hadean crustal remnants in South China. Furthermore, a detrital zircon with a U-Pb age as old as 4.1 Ga has been found in Tibet. This is the oldest zircon so far reported in China. These results imply that continental crust was more widespread than previously thought in the late Hadean, but its majority was efficiently reworked into Archean continental crust. On the basis of available zircon U-Pb age and Hf isotope data, it appears that the growth of continental crust in South China started since the early Archean, but a stable cratonic block through reworking did not occur until the Paleoproterozoic. Thus the operation of some form of plate tectonics may occur in China continents since Eoarchean. The initial destruction of the South China craton was caused by intensive magmatic activity in association with the assembly and breakup of the supercontinent Rodinia during the Neoproterozoic. However, most of the Archean and Paleoproterozoic crustal materials in South China do not occur as surface rocks, but exist as sporadic crustal remnants. Nevertheless, the occurrence of Neoproterozoic magmatism is still a signature to distinguish South China from North China.
    Download Collect
  • SHRIMP zircon U-Pb dating for two episodes of migmatization in the Dabie orogen

    Tang Jun   Zhang ShaoBing   Zhao ZiFu  

    Zircon CL imaging and SHRIMP U-Pb dating were carried out for migmatite in the Dabie orogen. Zircons from the Manshuihe migmatite show clear core-rim structures. The cores display sector or weak zoning and low Th/U ratios of 0.01 to 0.17, indicating their precipitation from metamorphic fluid. They yield a weighted mean age of 137 +/- 5 Ma. By contrast, the rims exhibit planar or nebulous zoning with relatively high Th/U ratios of 0.35 to 0.69, suggesting their growth from metamorphic melt. They give a weighted mean age of 124 +/- 2 Ma. Zircons from the Fenghuangguan migmatite also display core-rim structures. The cores are weakly oscillatory zoned or unzoned with high Th/U ratios of 0.21 to 3.03, representing inherited zircons of magmatic origin that experienced different degrees of solid-state recrystallization. SHRIMP U-Pb analyses obtain that its protolith was emplaced at 768 +/- 12 Ma, consistent with middle Neoproterozoic ages for protoliths of most UHP metaigneous rocks in the Dabie-Sulu orogenic belt. By contrast, the rims do not show significant zoning and have very low Th/U ratios of 0.01 to 0.09, typical of zircon crystallized from metamorphic fluid. They yield a weighted Pb-206/U-238 age of 137 +/- 4 Ma. Taking the two case dates together, it appears that there are two episodes of zircon growth and thus migmatitization at 137 +/- 2 Ma and 124 +/- 2 Ma, respectively, due to metamorphic dehydration and partial melting. The appearance of metamorphic dehydration corresponds to the beginning of tectonic extension thus to the tectonic switch from crustal compression to extension in the Dabie orogen. On the other hand, the partial melting is responsible for the extensional climax, resulting in formation of coeval migmatite, granitoid and granulite. They share the common protolith, the collision-thickened continental crust of mid-Neoproterozoic ages.
    Download Collect
1

Contact

If you have any feedback, Please follow the official account to submit feedback.

Turn on your phone and scan

Submit Feedback