In this study, a full-sib population of Ctenopharyngodon idella was constructed and approximately 500 C. idella individuals were sampled at four early developmental stages (hatching, first feeding, juvenile fish and young fish). Four DNA pools were constructed and subjected to next-generation sequencing. On the basis of the identification of single nucleotide polymorphisms (SNP), changes in gene and genotype frequencies during the developmental progress of C. idella were revealed, which indicates that death during the early developmental stage is not a random process. These findings will establish the basis for further studies performed for identifying superior alleles or genotypes as target markers for molecular breeding.
The molecular analysis of sex in vertebrates is important, as it has the potential to provide vital information for theoretical and applied research alike. Teleost fish are the ancient vertebrates that present a broad sex chromosome system but lack differentiated sex chromosomes in most species. Hence understanding the sex in fish would not only illuminate the sex determination evolution in vertebrates but also shed light on fish farming. In the present study, we used grass carp as a teleost fish model, studied the Y chromosome by using a pool-and-sequence strategy in combination with fragment-ratio method. In total, we identified five Y-linked scaffolds (totaling 347 Kb) and six Y-specific sequences that could be used as sex-specific markers, demonstrating the suitability of NGS-based re-sequencing of pooled DNAs for the identification of sex markers in fish. Moreover, 14 putative Y-linked genes were described for the first time. All the genes, except for un-y1, un-y2, and ubq-y, showed high similarity to their female homologs. RT-PCR revealed that ubq-y was only expressed in the male hypothalamus and pituitary. These findings provided an abundant resource for the Y chromosome of grass carp, and may help elucidate sex chromosome evolution in cyprinid fish.
Integrin beta-1 (ITGB1) is a transmembrane protein belonging to the integrin family and it plays an important role in viral entry. In this study, the itgb1b gene of the rare minnow, Gobiocypris rarus, was cloned and analyzed. To investigate the possible role of itgb1b on grass carp reovirus (GCRV) infection, we generated an ITGB1b-deficient rare minnow (ITGB1b-/-) using the CRISPR/Cas9 system. Following stimulation with GCRV, the survival time of the -ITGB1b-/- rare minnows was extended in comparison to the wild-type minnows. Moreover, the relative copy number of GCRV and the level of clathrin-mediated endocytosis-associated and apoptosis-related gene expression in the ITGB1b-/- rare minnows was significantly lower than that of the wild-type minnows. These results suggested that the absence of itgb1b reduced viral entry efficiency and the expression of apoptosis-related genes. Moreover, the data suggested that itgb1b played an important role in mediating the entry of viruses into the cells via clathrin. Therefore, these findings provide novel insight into the function of itgb1b in the process of GCRV infection.=20