Peroxiredoxin 2 (PRDX2) is an antioxidant and molecular chaperone that can be secreted from tumor cells. But the role of PRDX2 in acute myocardial infarction (AMI) is not clear. In the current study, we demonstrate the role of PRDX2 from clinical trials, H9c2 cells and in a mouse model. ELISA analysis shows that serum concentrations of VEGF and inflammatory factor IL-1 beta, TNF-alpha and IL-6 were increased in AMI patients compared to a control group. The expression of PRDX2 was also upregulated. In vivo experiments show that the expression of PRDX2 inhibits hypoxia-induced oxidative stress injury to H9c2 cells. However, PRDX2 expression promotes TLR4 mediated inflammatory factor expression and VEGF expression under hypoxia conditions. PRDX2 overexpression in H9c2 cells also promotes human endothelial cell migration, vasculogenic mimicry formation and myocardial hypertrophy related protein expression. The overexpression of PRDX2 inhibits ROS level and myocardial injury after AMI but promotes inflammatory responses in vivo. Immunocytochemistry and immunofluorescence analysis show that overexpression of PRDX2 promotes angiogenesis and myocardial hypertrophy. Taken together, our results indicate that PRDX2 plays two roles in acute infarction - the promotion of cell survival and inflammatory myocardial hypertrophy.
Jia, Ning
Sun, Qinru
Su, Qian
Dang, Shaokang
Chen, Guomin
Substantial evidence has shown that the oxidative damage to hippocampal neurons is associated with the cognitive impairment induced by adverse stimuli during gestation named prenatal stress (PS). Taurine, a conditionally essential amino acid, possesses multiple roles in the brain as a neuromodulator or antioxidant. In this study, to explore the roles of taurine in PS-induced learning and memory impairment, prenatal restraint stress was set up and Morris water maze (MWM) was employed for testing the cognitive function in the one-month-old rat offspring. The mitochondrial reactive oxygen species (ROS) level, mitochondrial membrane potential (MMP), ATP and cytochrome c oxidase (CcO) activity and apoptosis-related proteins in the hippocampus were detected. The activity of the Akt-cyclic AMP response element-binding protein (CREB)peroxisome proliferator-activated receptor-gamma coactivator-1 alpha (PGC1 alpha) pathway in the hippocampus was measured. The results showed that high dosage of taurine administration in the early postnatal period attenuated impairment of spatial learning and memory induced by PS. Meanwhile, taurine administration diminished the increase in mitochondrial ROS, and recovered the reduction of MMP, ATP level and the activities of CcO, superoxide dismutase 2 (SOD2) and catalase induced by PS in the hippocampus. In addition, taurine administration recovered PS-suppressed SOD2 expression level. Taurine administration blocked PS-induced decrease in the ratio of Bcl-2/Bax and increase in the ratio of cleaved caspase-3/full-length caspase-3. Notably, taurine inhibited PS-decreased phosphorylation of Akt (pAkt) and phosphorylation of CREB (pCREB), which consequently enhanced the mRNA and protein levels of PGC1a. Taken together, these results suggest that high dosage of taurine administration during the early postnatal period can significantly improve the cognitive function in prenatally stressed juvenile rats via activating the Akt-CREB-PGC1 alpha pathway. Therefore, taurine has therapeutic potential for prenatal stressed offspring rats in future.