Creat membership Creat membership
Sign in

Forgot password?

Confirm
  • Forgot password?
    Sign Up
  • Confirm
    Sign In
home > search

Now showing items 1 - 3 of 3

  • Inhaled particle counts on bicycle commute routes of low and high proximity to motorised traffic

    Tom Cole-Hunter   Lidia Morawska   Ian Stewart   Rohan Jayaratne   Colin Solomon  

    Frequent exposure to ultrafine particles (UFP) is associated with detrimental effects on cardiopulmonary function and health. UFP dose and therefore the associated health risk are a factor of exposure frequency, duration, and magnitude of (therefore also proximity to) a UFP emission source. Bicycle commuters using on-road routes during peak traffic times are sharing a microenvironment with high levels of motorised traffic, a major UFP emission source. Inhaled particle counts were measured on popular pre-identified bicycle commute route alterations of low (LOW) and high (HIGH) proximity to motorised traffic to the same inner-city destination at peak commute traffic times. During commute, real-time particle number concentration (PNC; mostly in the UFP range) and particle diameter (PD), heart rate, geographical location, and meteorological variables were measured. To determine inhaled particle counts, ventilation rate was calculated from heart-rate-ventilation associations, produced from periodic exercise testing. Total mean PNC of LOW, compared to HIGH, was reduced (1.56 x e(4) +/- 0.38 x e(4) versus 3.06 x e(4) +/- 0.53 x e(4) ppcc: p = 0.012). Total estimated ventilation rate did not differ significantly between LOW and HIGH (43 +/- 5 versus 46 +/- 9 L min(-1); p = 0.136); however, due to total mean PNC, minute inhaled particle counts were 48% lower in LOW, compared to HIGH (6.71 x e(8) +/- 1.30 x e(8) versus 14.08 x e(8) +/- 1.77 x e(8) particles total; p = 0.003). For bicycle commuting at peak morning commute times, inhaled particle counts and therefore cardiopulmonary health risk may be substantially reduced by decreasing proximity to motorised traffic, which should be considered by both bicycle commuters and urban planners. (C) 2012 Elsevier Ltd. All rights reserved.
    Download Collect
  • The relationship between bicycle commuting and perceived stress: a cross-sectional study

    Ione Avila-Palencia   Audrey de Nazelle   Tom Cole-Hunter   David Donaire-Gonzalez   Michael Jerrett   Daniel A Rodriguez   Mark J Nieuwenhuijsen  

    IntroductionActive commuting — walking and bicycling for travel to and/or from work or educational addresses — may facilitate daily, routine physical activity. Several studies have investigated the relationship between active commuting and commuting stress; however, there are no studies examining the relationship between solely bicycle commuting and perceived stress, or studies that account for environmental determinants of bicycle commuting and stress. The current study evaluated the relationship between bicycle commuting, among working or studying adults in a dense urban setting, and perceived stress.MethodsA cross-sectional study was performed with 788 adults who regularly travelled to work or study locations (excluding those who only commuted on foot) in Barcelona, Spain. Participants responded to a comprehensive telephone survey concerning their travel behaviour from June 2011 through to May 2012. Participants were categorised as either bicycle commuters or non-bicycle commuters, and (based on the Perceived Stress Scale, PSS-4) as either stressed or non-stressed. Multivariate Poisson regression with robust variance models of stress status based on exposures with bicycle commuting were estimated and adjusted for potential confounders.ResultsBicycle commuters had significantly lower risk of being stressed than non-bicycle commuters (Relative Risk; RR (95% CI)=0.73 (0.60 to 0.89), p=0.001). Bicycle commuters who bicycled 4 days per week (RR (95% CI)=0.42 (0.24 to 0.73), p=0.002) and those who bicycled 5 or more days per week (RR (95% CI)=0.57 (0.42 to 0.77), p<0.001) had lower risk of being stressed than those who bicycled less than 4 days. This relationship remained statistically significant after adjusting for individual and environmental confounders and when using different cut-offs of perceived stress.ConclusionsStress reduction may be an important consequence of routine bicycle use and should be considered by decision makers as another potential benefit of its promotion.
    Download Collect
  • Utility of an alternative bicycle commute route of lower proximity to motorised traffic in decreasing exposure to ultra-fine particles, respiratory symptoms and airway inflammation – a structured exposure experiment

    Tom Cole-Hunter   Rohan Jayaratne   Ian B Stewart   Matthew Hadaway   Lidia Morawska   Colin Solomon  

    BACKGROUND Bicycle commuting in an urban environment of high air pollution is known to be a potential health risk, especially for susceptible individuals. While risk management strategies aimed to reduce exposure to motorised traffic emissions have been suggested, only limited studies have assessed the utility of such strategies in real-world circumstances. OBJECTIVES The potential to lower exposure to ultrafine particles (UFP; < 0.1 μm) during bicycle commuting by reducing proximity to motorised traffic was investigated with real-time air pollution and intermittent acute inflammatory measurements in healthy individuals using their typical higher proximity, and an alternative lower proximity, bicycle commute route. METHODS Thirty-five healthy adults (mean ± SD: age = 39 ± 11 yr; 29% female) completed two return trips, one each in the condition of their typical route (HIGH) and a pre-determined alternative route of lower proximity to motorised traffic (LOW); proximity being determined by the proportion of on-road cycle paths. Particle number concentration (PNC) and diameter (PD) were monitored in-commute in real-time. Acute inflammatory indices of respiratory symptoms (as a scalar of frequency from very low to very high / 1 to 5), lung function and spontaneous sputum (for inflammatory cell analyses) were collected immediately pre-commute, and immediately and three hours post-commute. RESULTS In the condition of LOW, compared to in the condition of HIGH, there was a significant decrease in mean PNC (1.91 x e4 ± 0.93 × e4 ppcc vs. 2.95 × e4 ± 1.50 × e4 ppcc; p ≤ 0.001), and the mean frequency of in-commute offensive odour detection (2.1 vs. 2.8; p = 0.019), dust and soot observation (1.7 vs. 2.3; p = 0.038) and nasopharyngeal irritation (1.5 vs. 1.9; p = 0.007). There were no significant differences between LOW and HIGH in the commute distance and duration (12.8 ± 7.1 vs. 12.0 ± 6.9 km and 44 ± 17 vs. 42 ± 17 min, respectively), or other indices of acute airway inflammation. CONCLUSIONS Exposure to PNC and offensive odour, and nasopharyngeal irritation, can be significantly lowered when utilising a route of lower proximity to motorised traffic whilst bicycle commuting, without significantly affecting commute distance or duration. This may bring health benefits for both healthy and susceptible individuals.
    Download Collect
1

Contact

If you have any feedback, Please follow the official account to submit feedback.

Turn on your phone and scan

Submit Feedback