Creat membership Creat membership
Sign in

Forgot password?

Confirm
  • Forgot password?
    Sign Up
  • Confirm
    Sign In
home > search

Now showing items 1 - 13 of 13

  • Mineral dissolution and reprecipitation mediated by an amorphous phase

    Konrad-Schmolke, Matthias   Halama, Ralf   Wirth, Richard   Thomen, Aurélien   Klitscher, Nico   Morales, Luiz   Schreiber, Anja   Wilke, Franziska D. H.  

    Download Collect
  • Slab mantle dehydrates beneath Kamchatka-Yet recycles water into the deep mantle

    Konrad-Schmolke, Matthias   Halama, Ralf   Manea, Vlad C.  

    Download Collect
  • High-T, Low-P Formation of Rare Olivine-bearing Symplectites in Variscan Eclogite

    Scott, James M.   Konrad-Schmolke, Matthias   O'Brien, Patrick J.   Guenter, Christina  

    Extremely rare veinlets and reaction textures composed of symplectites of olivine (similar to Fo(43-55)) + plagioclase +/- spinel +/- ilmenite, associated with more common pyroxene + plagioclase and amphibole + plagioclase varieties, are preserved within eclogites and garnet pyroxenites in the Moldanubian Zone of the Bohemian Massif. Thermodynamic modelling integrated with conventional geothermometry conducted on an eclogite reveals that the symplectite-forming stage occurred at high T (similar to 850 degrees C) and low P (< 6 and > 2 center dot 5 kbar). The development of the different symplectite types reflects reactions that took place in micro-scale domains. The breakdown of high-P garnet controlled the formation of olivine-bearing and amphibole + plagioclase symplectites, whereas breakdown of high-P omphacite led to formation of pyroxene + plagioclase symplectites. In addition, post-eclogite facies but pre-symplectite stage porphyroblastic amphibole and phlogopite were also replaced by olivine-bearing symplectites. Material transfer calculations and thermodynamic modelling indicate that the formation of different symplectite types was linked despite their different bulk compositions. For example, the olivine-bearing symplectites gained Fe +/- Mg, whereas adjacent amphibole + plagioclase and pyroxene + plagioclase symplectites show losses in Fe and Mg; Al, Si and Ca were also variably exchanged. The olivine-bearing symplectites were particularly sensitive to Na despite the small concentration of this element. In eclogites where Na was readily available, the plagioclase composition in the olivine-bearing symplectites shifted from pure anorthite to bytownite, with the less calcic feldspar partitioning Si and inhibiting the formation of orthopyroxene. This regional high-T, low-P granulite-facies symplectite overprint may have been caused by advective heat loss from rapidly exhumed high-T, high-P granulitic bodies (Gfohl Unit) that were emplaced into and over the middle crust (Monotonous and Varied Series) during Carboniferous continent-continent collision.
    Download Collect
  • Compositional re-equilibration of garnet: the importance of sub-grain boundaries

    Konrad-Schmolke, Matthias   O\"Brien, Patrick J.   Heidelbach, Florian  

    Garnets from meta-granitoid high pressure rocks (Sesia Zone, Western Alps) show complex internal sub-grain textures in electron forescatter images. All investigated garnets consist of a large number of sub-grains with different shapes and sizes. Some garnets exhibit a Sub-texture with very fine-grained (< 20 mu m) sub-grains in their cores overgrown by palisade-like subgrains in the rims. Sub-grain boundaries in these garnets have enabled diffusive element exchange between the garnet core and the surrounding matrix. Compositional mapping reveals zonation patterns of Mg that indicate modification of the garnet composition during prograde metamorphism. The extent of diffusional re-equilibration is dependent on sub-grain size and element diffusivities. Our samples show that X(mg) is strongly influenced by diffusion along the sub-grain boundaries, whereas apparently slow diffusing elements, such as Ca, Ti and Y preserve their original concentric zonation pattern. This differential re-equilibration leads to very complex chemical zonation that cannot be easily interpreted in terms of simple prograde growth zonation or of normally-applied spherical diffusion models. The observation that almost all garnets in the investigated samples exhibit a sub-grain pattern suggests this might be a common feature in high pressure/low temperature rocks.
    Download Collect
  • Compositional re-equilibration of garnet: the importance of sub-grain boundaries RID C-2856-2009

    Konrad-Schmolke, Matthias   O'Brien, Patrick J.   Heidelbach, Florian  

    Garnets from meta-granitoid high pressure rocks (Sesia Zone, Western Alps) show complex internal sub-grain textures in electron forescatter images. All investigated garnets consist of a large number of sub-grains with different shapes and sizes. Some garnets exhibit a Sub-texture with very fine-grained (< 20 mu m) sub-grains in their cores overgrown by palisade-like subgrains in the rims. Sub-grain boundaries in these garnets have enabled diffusive element exchange between the garnet core and the surrounding matrix. Compositional mapping reveals zonation patterns of Mg that indicate modification of the garnet composition during prograde metamorphism. The extent of diffusional re-equilibration is dependent on sub-grain size and element diffusivities. Our samples show that X-mg is strongly influenced by diffusion along the sub-grain boundaries, whereas apparently slow diffusing elements, such as Ca, Ti and Y preserve their original concentric zonation pattern. This differential re-equilibration leads to very complex chemical zonation that cannot be easily interpreted in terms of simple prograde growth zonation or of normally-applied spherical diffusion models. The observation that almost all garnets in the investigated samples exhibit a sub-grain pattern suggests this might be a common feature in high pressure/low temperature rocks.
    Download Collect
  • Combined thermodynamic–geochemical modeling in metamorphic geology: Boron as tracer of fluid–rock interaction

    Konrad-Schmolke, Matthias   Halama, Ralf  

    Quantitative geochemical modeling is today applied in a variety of geological environments from the petrogenesis of igneous rocks to radioactive waste disposal. In addition, the development of thermodynamic databases and computer programs to calculate equilibrium phase diagrams has greatly advanced our ability to model geodynamic processes. Combined with experimental data on elemental partitioning and isotopic fractionation, thermodynamic forward modeling unfolds enormous capacities that are far from exhausted. In metamorphic petrology the combination of thermodynamic and trace element forward modeling can be used to study and to quantify processes at spatial scales from mu m to km. The thermodynamic forward models utilize Gibbs energy minimization to quantify mineralogical changes along a reaction path of a chemically open fluid/rock system. These results are combined with mass balanced trace element calculations to determine the trace element distribution between rock and melt/fluid during the metamorphic evolution. Thus, effects of mineral reactions, fluid-rock interaction and element transport in metamorphic rocks on the trace element and isotopic composition of minerals, rocks and percolating fluids or melts can be predicted. Here we illustrate the capacities of combined thermodynamic-geochemical modeling based on two examples relevant to mass transfer during metamorphism. The first example focuses on fluid-rock interaction in and around a blueschist-facies shear zone in felsic gneisses, where fluid-induced mineral reactions and their effects on boron (B) concentrations and isotopic compositions in white mica are modeled. In the second example, fluid release from a subducted slab, the associated transport of B as well as variations in B concentrations and isotopic compositions in liberated fluids and residual rocks are modeled. We compare the modeled results of both examples to geochemical data of natural minerals and rocks and demonstrate that the combination of thermodynamic and geochemical models enables quantification of metamorphic processes and insights into element cycling that would have been unattainable if only one model approach was chosen. (C) 2014 Elsevier B.V. All rights reserved.
    Download Collect
  • Multi-stage reaction history in different eclogite types from the Pakistan Himalaya and implications for exhumation processes RID C-2856-2009

    Wilke, Franziska D. H.   O'Brien, Patrick J.   Altenberger, Uwe   Konrad-Schmolke, Matthias   Khan, M. Ahmed  

    Metabasites were sampled from rock series of the subducted margin of the Indian Plate, the so-called Higher Himalayan Crystalline, in the Upper Kaghan Valley, Pakistan. These vary from corona dolerites, cropping out around Saif-ul-Muluk in the south, to coesite-eclogite close to the suture zone against rocks of the Kohistan arc in the north. Bulk rock major- and trace-element chemistry reveals essentially a single protolith as the source for five different eclogite types, which differ in fabric, modal mineralogy as well as in mineral chemistry. The study of newly-collected samples reveals coesite (confirmed by in situ Raman spectroscopy) in both garnet and omphacite. All eclogites show growth of amphiboles during exhumation. Within some coesite-bearing eclogites the presence of glaucophane cores to barroisite is noted whereas in most samples porphyroblastic sodic-calcic amphiboles are rimmed by more aluminous calcic amphibole (pargasite, tschermakite, and edenite). Eclogite facies rutile is replaced by ilmenite which itself is commonly surrounded by titanite. In addition, some eclogite bodies show leucocratic segregations containing phengite, quartz, zoisite and/or kyanite. The important implication is that the complex exhumation path shows stages of initial cooling during decompression (formation of glaucophane) followed by reheating: a very similar situation to that reported for the coesite-bearing eclogite series of the Tso Morari massif, India, 450 km to the south-east. (C) 2009 Elsevier B.V. All rights reserved.
    Download Collect
  • Rb-Sr and in situ Ar-40/Ar-39 dating of exhumation-related shearing and fluid-induced recrystallization in the Sesia zone (Western Alps,Italy)

    Halama, Ralf   Glodny, Johannes   Konrad-Schmolke, Matthias   Sudo, Masafumi  

    The Sesia zone in the Italian Western Alps is a piece of continental crust that has been subducted to eclogite-facies conditions and records a complex metamorphic history. The exact timing of events and the significance of geochronological information are debated due to the interplay of tectonic, metamorphic, and metasomatic processes. Here we present new geochronological data using Rb-Sr internal mineral isochrons and in situ Ar-40/Ar-39 laser ablation data to provide constraints on the relative importance of fluid-mediated mineral replacement reactions and diffusion for the interpretation of radiogenic isotope signatures, and on the use of these isotopic systems for dating metamorphic and variably deformed rocks. Our study focuses on the shear zone at the contact between two major lithological units of the Sesia zone, the eclogitic micaschists and the gneiss minuti. Metasedimentary rocks of the eclogitic micaschists unit contain phengite with step-like zoning in major element chemistry as evidence for petrologic disequilibrium. Distinct Ar-40/Ar-39 spot ages of relict phengite cores and over-printed rims demonstrate the preservation of individual age domains in the crystals. The eclogitic micaschists also show systematic Sr isotope disequilibria among different phengite populations, so that minimum ages of relict assemblage crystallization can be differentiated from the timing of late increments of deformation. The preservation of these disequilibrium features shows the lack of diffusive re-equilibration and underpins that fluid-assisted dissolution and recrystallization reactions are the main factors controlling the isotope record in these subduction-related metamorphic rocks. Blueschist-facies mylonites record deformation along the major shear zone that separates the eclogitic micaschists from the gneiss minuti. Two Rb-Sr isochrones that comprise several white mica fractions and glaucophane constrain the timing of this deformation and accompanying near-complete blueschist-facies re-equilibration of the Rb-Sr system to 60.1 +/- 0.9 Ma and 60.9 +/- 2.1 Ma, respectively. Overlapping ages in eclogitic micaschists of 60.1 +/- 1.1 (Rb-Sr isochron of sheared matrix assemblage), 58.6 +/- 0.8, and 60.9 +/- 0.4 Ma (white mica Ar-40/Ar-39 inverse isochron ages) support the significance of this age and show that fluid-rock interaction and partial re-equilibration occurred as much as several kilometers away from the shear zone. An earlier equilibration during high-pressure conditions in the eclogitic mica schists is recorded in minimum Rb-Sr ages for relict assemblages (77.2 +/- 0.8 and 72.4 +/- 1.1 Ma) and an Ar-40/Ar-39 inverse isochron age of 75.4 +/- 0.8 Ma for white mica cores, again demonstrating that the two isotope systems provide mutually supporting geochronological information. Local reactivation and recrystallization along the shear zone lasted >15 m.y., as late increments of deformation are recorded in a greenschist-facies mylonite by a Rb-Sr isochron age of 46.5 +/- 0.7 Ma.
    Download Collect
  • Garnet growth at high- and ultra-high pressure conditions and the effect of element fractionation on mineral modes and composition RID C-2856-2009

    Konrad-Schmolke, Matthias   O'Brien, Patrick J.   de Capitani, Christian   Carswell, Dennis A.  

    In this paper we show that thermodynamic forward modelling, using Gibbs energy minimisation with consideration of element fractionation into refractory phases and/or liberated fluids, is able to extract information about the complex physical and chemical evolution of a deeply subducted rock volume. By comparing complex compositional growth zonations in garnets from high-and ultra-high pressure samples with those derived from thermodynamic forward modelling, we yield an insight into the effects of element fractionation on composition and modes of the co-genetic metamorphic phase assemblage. Our results demonstrate that fractionation effects cause discontinuous growth and re-crystallisation of metamorphic minerals in high pressure rocks. Reduced or hindered mineral growth at UHP conditions can control the inclusion and preservation of minerals indicative for UHP metamorphism, such as coesite, thus masking peak pressure conditions reached in subducted rocks. Further, our results demonstrate that fractional garnet crystallisation leads to strong compositional gradients and step-like zonation patterns in garnet, a feature often observed in high-and ultra-high pressure rocks. Thermodynamic forward modelling allows the interpretation of commonly observed garnet growth zonation patterns in terms of garnet forming reactions and the relative timing of garnet growth with respect to the rock's pressure-temperature path. Such a correlation is essential for the determination of tectonic and metamorphic, rates in subduction zones as well as for the understanding of trace element signatures in subduction related rocks. It therefore should be commonplace in the investigation of metamorphic processes in subduction zones. (C) 2007 Elsevier B.V. All rights reserved.
    Download Collect
  • Fluid Migration above a Subducted Slab-Constraints on Amount, Pathways and Major Element Mobility from Partially Overprinted Eclogite-facies Rocks (Sesia Zone, Western Alps) RID C-2856-2009 RID C-6153-2009

    Konrad-Schmolke, Matthias   O'Brien, Patrick J.   Zack, Thomas  

    The Western Alpine Sesia-Lanzo Zone (SLZ) is a sliver of eclogite-facies continental crust exhumed from mantle depths in the hanging wall of a subducted oceanic slab. Eclogite-facies felsic and basic rocks sampled across the internal SLZ show different degrees of retrograde metamorphic overprint associated with fluid influx. The weakly deformed samples preserve relict eclogite-facies mineral assemblages that show partial fluid-induced compositional re-equilibration along grain boundaries, brittle fractures and other fluid pathways. Multiple fluid influx stages are indicated by replacement of primary omphacite by phengite, albitic plagioclase and epidote as well as partial re-equilibration and/or overgrowths in phengite and sodic amphibole, producing characteristic step-like compositional zoning patterns. The observed textures, together with the map-scale distribution of the samples, suggest open-system, pervasive and reactive fluid flux across large rock volumes above the subducted slab. Thermodynamic modelling indicates a minimum amount of fluid of 0 center dot 1-0 center dot 5 wt % interacting with the wall-rocks. Phase relations and reaction textures indicate mobility of K, Ca, Fe and Mg, whereas Al is relatively immobile in these medium-temperature-high-pressure fluids. Furthermore, the thermodynamic models show that recycling of previously fractionated material, such as in the cores of garnet porphyroblasts, largely controls the compositional re-equilibration of the exhumed rock body.
    Download Collect
  • Combined thermodynamic and rare earth element modelling of garnet growth during subduction: Examples from ultrahigh-pressure eclogite of the Western Gneiss Region, Norway RID C-6153-2009 RID C-2856-2009 RID F-8617-2010

    Konrad-Schmolke, Matthias   Zack, Thomas   O'Brien, Patrick J.   Jacob, Dorrit E.  

    Major and trace element zonation patterns were determined in ultrahigh-pressure eclogite garnets from the Western Gneiss Region (Norway). All investigated garnets show Multiple growth zones and preserve complex growth zonation patterns with respect to both major and rare earth elements (REE). Due to chemical differences of the host rocks two types of major element compositional zonation patterns occur: (1) abrupt, step-like compositional changes corresponding with the growth zones and (2) compositionally homogeneous interiors, independent of growth zones, followed by abrupt chemical changes towards the rims. Despite differences in major element zonation, the REE patterns are almost identical in all garnets and can be divided into four distinct zones with characteristic patterns. In order to interpret the major and trace element distribution and zoning patterns in terms of the subduction history of the rocks, we combined thermodynamic forward models for appropriate bulk rock compositions to yield molar proportions and major element compositions of stable phases along the inferred pressure-temperature path with a mass balance distribution of REEs among the calculated stable phases during high pressure metamorphism. Our thermodynamic forward models reproduce the complex major element zonation patterns and growth zones in the natural garnets, with garnet growth predicted during four different reaction stages: (1) chlorite breakdown, (2) epidote breakdown, (3) amphibole breakdown and (4) reduction in molar clinopyroxene at ultrahigh-pressure conditions. Mass-balance of the rare earth element distribution among the modelled stable phases yielded characteristic zonation patterns in garnet that closely resemble those in the natural samples. Garnet growth and trace element incorporation Occurred in near thermodynamic equilibrium with matrix phases during subduction. The rare earth element patterns in garnet exhibit distinct enrichment zones that fingerprint the minerals involved in the garnet-forming reactions as well as local peaks that can be explained by fractionation effects and changes in the mineral assemblage. (C) 2008 Elsevier B.V. All rights reserved.
    Download Collect
  • Fluid migration above a subducted slab - Thermodynamic and trace element modelling of fluid-rock interaction in partially overprinted eclogite-facies rocks (Sesia Zone, Western Alps)

    Konrad-Schmolke, Matthias   Zack, Thomas   O'Brien, Patrick J.   Barth, Matthias  

    The amount and composition of subduction zone fluids and the effect of fluid-rock interaction at a slab-mantle interface have been constrained by thermodynamic and trace element modelling of partially overprinted blueschist-facies rocks from the Sesia Zone (Western Alps). Deformation-induced differences in fluid flux led to a partial preservation of pristine mineral cores in weakly deformed samples that were used to quantify Li, B, Stand Pb distribution during mineral growth, -breakdown and modification induced by fluid-rock interaction. Our results show that Li and 13 budgets are fluid-controlled, thus acting as tracers for fluid-rock interaction processes, whereas Stand Pb budgets are mainly controlled by the fluid-induced formation of epidote. Our calculations show that fluid-rock interaction caused significant Li and B depletion in the affected rocks due to leaching effects, which in turn can lead to a drastic enrichment of these elements in the percolating fluid. Depending on available fluid-mineral trace element distribution coefficients modelled fluid rock ratios were up to 0.06 in weakly deformed samples and at least 0.5 to 4 in shear zone mylonites. These amounts lead to time integrated fluid fluxes of up to 1.4-10(2) m(3) m(-2) in the weakly deformed rocks and 1-8-10(3) m(3) m(-2) in the mylonites. Combined thermodynamic and trace element models can be used to quantify metamorphic fluid fluxes and the associated element transfer in complex, reacting rock systems and help to better understand commonly observed fluid-induced trace element trends in rocks and minerals from different geodynamic environments. (C) 2011 Elsevier B.V. All rights reserved.
    Download Collect
  • The physico-chemical properties of a subducted slab from garnet zonation patterns (Sesia Zone, Western Alps) RID C-2856-2009

    Konrad-Schmolke, Matthias   Babist, Jochen   Handy, Mark R.   O'Brien, Patrick J.  

    Garnets in continentally derived high-pressure (HP) rocks of the Sesia Zone (Western Alps) exhibit three different chemical zonation patterns, depending on sample locality. Comparison of observed garnet zonation patterns with thermodynamically modelled patterns shows that the different patterns are caused by differences in the water content of the subducted protoliths during prograde metamorphism. Zonation patterns of garnets in water-saturated host rocks show typical prograde chemical zonations with steadily increasing pyrope content and increasing XMg, together with bell-shaped spessartine patterns. In contrast, garnets in water-undersaturated rocks have more complex zonation patterns with a characteristic decrease in pyrope and XMg between core and inner rim. In some cases, garnets show an abrupt compositional change in core-to-rim profiles, possibly due to water-undersaturation prior to HP metamorphism. Garnets from both water-saturated and water-undersaturated rocks show signs of intervening growth interruptions and core resorption. This growth interruption results from bulk-rock depletion caused by fractional garnet crystallization. The water content during burial influences significantly the physical properties of the subducted rocks. Due to enhanced garnet crystallization, water-undersaturated rocks, i.e. those lacking a free fluid phase, become denser than their water-saturated equivalents, facilitating the subduction of continental material. Although water-bearing phases such as phengite and epidote are stable up to eclogite-facies conditions in these rocks, dehydration reactions during subduction are lacking in water-undersaturated rocks up to the transition to the eclogite facies, due to the thermodynamic stability of such hydrous phases at high P-T conditions. Our calculations show that garnet zonation patterns strongly depend on the mineral parageneses stable during garnet growth and that certain co-genetic mineral assemblages cause distinct garnet zonation patterns. This observation enables interpretation of complex garnet growth zonation patterns in terms of garnet-forming reactions and water content during HP metamorphism, as well determination of detailed P-T paths.
    Download Collect
1

Contact

If you have any feedback, Please follow the official account to submit feedback.

Turn on your phone and scan

Submit Feedback