A system for separating nucleated cells from a blood sample includes a charge-flow separator (CFS), which separates blood into fractions according to the surface charge density characteristics coupled with an affinity-filtration separator which either outputs a separated blood fraction to the CFS or receives a separated blood fraction from the CFS. The system permits separation of nucleated fetal red blood cells, erythroid progenitor cells and other nucleated cells found in blood samples.
A charge-flow separation apparatus (CFS) for enriching rare cell populations, particularly fetal cells, from a whole blood sample by separating the rare cell fractions from whole fractions according to the relative-charge density and/or the relative binding affinity for a leukocyte depletion solid phase matrix is described. The apparatus having an internal cooling system allows for dissipating heat generated by the electric field of the apparatus. The internal cooling system, consisting of a plurality of cooling tubes to circulate coolant material, prevents cellular degradation typically associated with the high heat generated by the electric field and permits the use of a higher voltage gradient to shorten separation times.
A method for enriching rare cell populations from a whole blood sample by separating rare cell fractions from whole according to the relative charge density and/or the relative binding affinity for a leukocyte depletion solid phase matrix. The enrichment method may be operated stand alone, or as a pre or post-processing step in conjunction with a charge-flow separation method.
There is disclosed thermally insulated outer garments for covering the head, torso, arms, and legs of the wearer or any portion thereof, and which also cover the feet of the wearer and the footwear on the feet of the wearer. In addition to providing conventional features of such garments, the insulated garments disclosed are arranged with a reclosable opening provided with a zipper or other device for each foot and leg of the wearer, such opening extending from the bottom of the leg and foot portion upward to the thigh portion so that the shoe and foot covering portions may be slipped off of the foot utilizing the reclosable slit opening and secured by appropriate means on the upper portion of the leg. This permits the wearer to walk about while keeping the foot portion of the insulated garment out of contact with the ground and without removing any separate parts of the garment. In one embodiment the garment has separate insulated leg and foot covering portions for each leg and foot, while in another embodiment the lower portion has a sleeping bag type configuration with a single insulated enclosure for both legs and both feet.
A charge-flow separation apparatus (CFS) and method for enriching rare cell populations, particularly fetal cells, from a whole blood sample by separating the rare cell fractions from whole according to the relative charge density and/or the relative binding affinity for a leukocyte depletion solid phase matrix. The enrichment method may be operated stand alone, or as a pre- or post-processing step in conjunction with a charge-flow separation method.
A preparative scale electrical separator, which is matrix-free and may be operated in both a batch mode and a continuous, flow-through mode is provided. It may be scaled according to the solution quantities which are to be processed. An internal cooling system whereby the process fluid is always in close proximity to a chilled surface assures an efficient heat dissipation during the separation and concentration processes and also allows the use of higher voltage gradients and shorter separation times than prior designs of electrophoretic separators. Electroosmotic and convective mixing is reduced by providing internal, compartmentation of sample fractions, focusing is improved and focusing times are decreased. A counter-flow gradient focusing method using the electrophoretic separator allows for separation of cells from human or animal blood and tissues, cells from plants, bacteria and viruses. The counter-flow gradient focusing method employs both a counter-flow in a direction opposite from the electromobility of the charged components and a flow gradient resulting from the withdrawal of a fractional flow unit from each subcompartment in the apparatus.