Wage, Kathleen E.
Dzieciuch, Matthew A.
Worcester, Peter F.
Shipping noise and wind are the dominant sources of ocean noise in the frequency band between 20 and 500 Hz. This paper analyzes noise in that band using data from the SPICEX experiment, which took place in the North Pacific in 2004-2005, and compares the results with other North Pacific experiments. SPICEX included vertical arrays with sensors above and below the surface conjugate depth, facilitating an analysis of the depth dependence of ambient noise. The paper includes several key results. First, the 2004-05 noise levels at 50 Hz measured in SPICEX had not increased relative to levels measured by Morris [(1978). J. Acoust. Soc. Am. 64, 581-590] at a nearby North Pacific site three decades earlier, but rather were comparable to those levels. Second, at 50Hz the noise below the conjugate depth decreases at a rate of -9.9 dB/km, which is similar to the rate measured by Morris and much less than the rate measured by Gaul, Knobles, Shooter, and Wittenborn [(2007). IEEE J. Ocean. Eng. 32, 497-512] for the CHURCH OPAL experiment. Finally, the paper describes the seasonal trends in noise over the year-long time series of the measurements. (C) 2017 Acoustical Society of America.
Henyey, Frank S.
Andrew, Rex K.
Mercer, James A.
Worcester, Peter F.
Dzieciuch, Matthew A.
Colosi, John A.
A mechanism is presented by which the observed acoustic intensity is made to vary due to changes in the acoustic path that are caused by internal-tide vertical fluid displacements. The position in range and depth of large-scale caustic structure is determined by the background sound-speed profile. Internal tides cause a deformation of the background profile, changing the positions of the caustic structures-which can introduce intensity changes at a distant receiver. Gradual fades in the acoustic intensity occurring over timescales similar to those of the tides were measured during a low-frequency (284-Hz) acoustic scattering experiment in the Philippine Sea in 2009 [White et al., J. Acoust. Soc. Am. 134(4), 3347-3358 (2013)]. Parabolic equation and Hamiltonian ray-tracing calculations of acoustic propagation through a plane-wave internal tide environmental model employing sound-speed profiles taken during the experiment indicate that internal tides could cause significant gradual changes in the received intensity. Furthermore, the calculations demonstrate how large-scale perturbations to the index of refraction can result in variation in the received intensity. (C) 2016 Acoustical Society of America.
The signal processing for ocean acoustic tomography experiments has been improved to account for the scattering of the individual arrivals. The scattering reduces signal coherence over time, bandwidth, and space. In the typical experiment, scattering is caused by the random internal-wave field and results in pulse spreading (over arrival-time and arrival-angle) and wander. The estimator-correlator is an effective procedure that improves the signal-to-noise ratio of travel-time estimates and also provides an estimate of signal coherence. The estimator-correlator smoothes the arrival pulse at the expense of resolution. After an arrival pulse has been measured, it must be associated with a model arrival, typically a ray arrival. For experiments with thousands of transmissions, this is a tedious task that is error-prone when done manually. An error metric that accounts for peak amplitude as well as travel-time and arrival-angle can be defined. The Viterbi algorithm can then be adapted to the task of automated peak tracking. Repeatable, consistent results are produced that are superior to a manual tracking procedure. The tracking can be adjusted by tuning the error metric in logical, quantifiable manner.
Stephen, Ralph A.
Bolmer, S. Thompson
Udovydchenkov, Ilya A.
Worcester, Peter F.
Dzieciuch, Matthew A.
Andrew, Rex K.
Mercer, James A.
Colosi, John A.
Howe, Bruce M.
Ocean bottom seismometer observations at 5000 m depth during the long-range ocean acoustic propagation experiment in the North Pacific in 2004 show robust, coherent, late arrivals that are not readily explained by ocean acoustic propagation models. These "deep seafloor" arrivals are the largest amplitude arrivals on the vertical particle velocity channel for ranges from 500 to 3200 km. The travel times for six (of 16 observed) deep seafloor arrivals correspond to the sea surface reflection of an out-of-plane diffraction from a seamount that protrudes to about 4100 m depth and is about 18 km from the receivers. This out-of-plane bottom-diffracted surface-reflected energy is observed on the deep vertical line array about 35 dB below the peak amplitude arrivals and was previously misinterpreted as in-plane bottom-reflected surface-reflected energy. The structure of these arrivals from 500 to 3200 km range is remarkably robust. The bottom-diffracted surface-reflected mechanism provides a means for acoustic signals and noise from distant sources to appear with significant strength on the deep seafloor. (C) 2013 Acoustical Society of America.
Udovydchenkov, Ilya A.
Brown, Michael G.
Duda, Timothy F.
Worcester, Peter F.
Dzieciuch, Matthew A.
Mercer, James A.
Andrew, Rex K.
Howe, Bruce M.
Colosi, John A.
The propagation of weakly dispersive modal pulses is investigated using data collected during the 2004 long-range ocean acoustic propagation experiment (LOAPEX). Weakly dispersive modal pulses are characterized by weak dispersion-and scattering-induced pulse broadening; such modal pulses experience minimal propagation-induced distortion and are thus well suited to communications applications. In the LOAPEX environment modes 1, 2, and 3 are approximately weakly dispersive. Using LOAPEX observations it is shown that, by extracting the energy carried by a weakly dispersive modal pulse, a transmitted communications signal can be recovered without performing channel equalization at ranges as long as 500 km; at that range a majority of mode 1 receptions have bit error rates (BERs) less than 10%, and 6.5% of mode 1 receptions have no errors. BERs are estimated for low order modes and compared with measurements of signal-to-noise ratio (SNR) and modal pulse spread. Generally, it is observed that larger modal pulse spread and lower SNR result in larger BERs. (C) 2013 Acoustical Society of America.
Dzieciuch, Matthew A.
Cornuelle, Bruce D.
Skarsoulis, Emmanuel K.
Wave-theoretic modeling can be applied to obtain travel-time sensitivity kernels (TSKs) representing the amount ray travel times are affected by sound-speed variations anywhere in the medium. This work explores the spatial frequency content of the TSK compared to expected ocean variability. It also examines the stability of the TSK in environments that produce strong sensitivity of ray paths to initial conditions. The conclusion is that the linear TSK model is an effective predictor of travel-time changes and that the rays perform nearly as well as the full-wave kernel. The TSK is examined in physical space and in wavenumber space, and it is found that this is the key to understanding how the travel time reacts to ocean perturbations. There are minimum vertical and horizontal length scales of ocean perturbations that are required for the travel time to be affected. The result is that the correspondence between true travel times and those calculated from the kernel is high for large-scale perturbations and somewhat less for the small scales. This demonstrates the validity of ray-based inversion of travel time observations for the cases under study. (C) 2013 Acoustical Society of America.
Chandrayadula, Tarun K.
Wage, Kathleen E.
Worcester, Peter F.
Dzieciuch, Matthew A.
Mercer, James A.
Andrew, Rex K.
Howe, Bruce M.
Mode travel time estimation in the presence of internal waves (IWs) is a challenging problem. IWs perturb the sound speed, which results in travel time wander and mode scattering. A standard approach to travel time estimation is to pulse compress the broadband signal, pick the peak of the compressed time series, and average the peak time over multiple receptions to reduce variance. The peak-picking approach implicitly assumes there is a single strong arrival and does not perform well when there are multiple arrivals due to scattering. This article presents a statistical model for the scattered mode arrivals and uses the model to design improved travel time estimators. The model is based on an Empirical Orthogonal Function (EOF) analysis of the mode time series. Range-dependent simulations and data from the Long-range Ocean Acoustic Propagation Experiment (LOAPEX) indicate that the modes are represented by a small number of EOFs. The reduced-rank EOF model is used to construct a travel time estimator based on the Matched Subspace Detector (MSD). Analysis of simulation and experimental data show that the MSDs are more robust to IW scattering than peak picking. The simulation analysis also highlights how IWs affect the mode excitation by the source. (C) 2013 Acoustical Society of America.
Sagen, Hanne
Worcester, Peter F.
Dzieciuch, Matthew A.
Geyer, Florian
Sandven, Stein
Babiker, Mohamed
Beszczynska-Moeller, Agnieszka
Dushaw, Brian D.
Cornuelle, Bruce
An ocean acoustic tomography system consisting of three moorings with low frequency, broad-band transceivers and a moored receiver located approximately in the center of the triangle formed by the transceivers was installed in the central, deep-water part of Fram Strait during 2010-2012. Comparisons of the acoustic receptions with predictions based on hydrographic sections show that the oceanographic conditions in Fram Strait result in complex arrival patterns in which it is difficult to resolve and identify individual arrivals. In addition, the early arrivals are unstable, with the arrival structures changing significantly over time. The stability parameter a suggests that the instability is likely not due to small-scale variability, but rather points toward strong mesoscale variability in the presence of a relatively weak sound channel as being largely responsible. The estimator-correlator [Dzieciuch, J. Acoust. Soc. Am. 136, 2512-2522 (2014)] is shown to provide an objective formalism for generating travel-time series given the complex propagation conditions. Because travel times obtained from the estimator-correlator are not associated with resolved, identified ray arrivals, inverse methods are needed that do not use sampling kernels constructed from geometric ray paths. One possible approach would be to use travel-time sensitivity kernels constructed for the estimator-correlator outputs. (C) 2017 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license.
White, Andrew W.
Mercer, James A.
Dzieciuch, Matthew A.
Worcester, Peter F.
Colosi, John A.
Predictions of log-amplitude variance are compared against sample log-amplitude variances reported by White, Andrew, Mercer, Worcester, Dzieciuch, and Colosi [J. Acoust. Soc. Am. 134, 3347-3358 (2013)] for measurements acquired during the 2009 Philippine Sea experiment and associated Monte Carlo computations. The predictions here utilize the theory of Munk and Zachariasen [J. Acoust. Soc. Am. 59, 818-838 (1976)]. The scattering mechanism is the Garrett-Munk internal wave spectrum scaled by metrics based on measured environmental profiles. The transmitter was at 1000m depth and the receivers at nominal range 107 km and depths 600-1600 m. The signal was a broadband m-sequence centered at 284 Hz. Four classes of propagation paths are examined: the first class has a single upper turning point at about 60m depth; the second and third classes each have two upper turning points at roughly 250 m; the fourth class has three upper turning points at about 450 m. Log-amplitude variance for all paths is predicted to be 0.04-0.09, well within the regime of validity of either Born or Rytov scattering. The predictions are roughly consistent with the measured and Monte Carlo log-amplitude variances, although biased slightly low. Paths turning in the extreme upper ocean (near the mixed layer) seem to incorporate additional scattering mechanisms not included in the original theory. (C) 2015 Acoustical Society of America.
Cornuelle, Bruce D.
Worcester, Peter F.
Dzieciuch, Matthew A.
Ocean acoustic tomography (OAT) was proposed in 1979 by Walter Munk and Carl Wunsch as an analogue to x-ray computed axial tomography for the oceans. The oceans axe opaque to most electromagnetic radiation, but there is a strong acoustic waveguide, and sound can propagate for 10 Mm and more with distinct multiply-refracted ray paths. Transmitting broadband pulses in the ocean leads to a set of impulsive arrivals at the receiver which characterize the impulse response of the sound channel. The peaks observed at the receiver are assumed to represent the arrival of energy traveling along geometric ray paths. These paths can be distinguished by arrival time, and by arrival angle when a vertical array of receivers is available. Changes in ray arrival time can be used to infer changes in ocean structure. Ray travel time measurements have been a mainstay of long-range acoustic measurements, but the strong sensitivity of ray paths to range-dependent sound speed perturbations makes the ray sampling functions uncertain in real cases. In the ray approximation travel times are sensitive to medium changes only along the corresponding eigenrays. Ray theory is an infinite-frequency approximation, and its eikonal equation has nonlinearities not found in the acoustic wave equation. We build on recent seismology results (kernels for body wave arrivals in the earth) to characterize the kernel for converting sound speed change in the ocean to travel time changes using more complete propagation physics. Wave-theoretic finite frequency kernels may show less sensitivity to small-scale sound speed structure.
Colosi, John A.
Van Uffelen, Lora J.
Cornuelle, Bruce D.
Dzieciuch, Matthew A.
Worcester, Peter F.
Dushaw, Brian D.
Ramp, Steven R.
As an aid to understanding long-range acoustic propagation in the Philippine Sea, statistical and phenomenological descriptions of sound-speed variations were developed. Two moorings of oceanographic sensors located in the western Philippine Sea in the spring of 2009 were used to track constant potential-density surfaces (isopycnals) and constant potential-temperature surfaces (isotherms) in the depth range 120-2000 m. The vertical displacements of these surfaces are used to estimate sound-speed fluctuations from internal waves, while temperature/salinity variability along isopycnals are used to estimate sound-speed fluctuations from intrusive structure often termed spice. Frequency spectra and vertical covariance functions are used to describe the space-time scales of the displacements and spiciness. Internal-wave contributions from diurnal and semi-diurnal internal tides and the diffuse internal-wave field [related to the Garrett-Munk (GM) spectrum] are found to dominate the sound-speed variability. Spice fluctuations are weak in comparison. The internal wave and spice frequency spectra have similar form in the upper ocean but are markedly different below 170-m depth. Diffuse internal-wave mode spectra show a form similar to the GM model, while internal-tide mode spectra scale as mode number to the minus two power. Spice decorrelates rapidly with depth, with a typical correlation scale of tens of meters.
Stephen, Ralph A.
Bolmer, S. Thompson
Dzieciuch, Matthew A.
Worcester, Peter F.
Andrew, Rex K.
Buck, Linda J.
Mercer, James A.
Colosi, John A.
Howe, Bruce M.
Receptions, from a ship-suspended source (in the band 50-100 Hz) to an ocean bottom seismometer (about 5000 m depth) and the deepest element on a vertical hydrophone array (about 750 m above the seafloor) that were acquired on the 2004 Long-Range Ocean Acoustic Propagation Experiment in the North Pacific Ocean, are described. The ranges varied from 50 to 3200 km. In addition to predicted ocean acoustic arrivals and deep shadow zone arrivals (leaking below turning points), "deep seafloor arrivals," that are dominant on the seafloor geophone but are absent or very weak on the hydrophone array, are observed. These deep seafloor arrivals are an unexplained set of arrivals in ocean acoustics possibly associated with seafloor interface waves. (C) 2009 Acoustical Society of America. [DOI: 10.1121/1.3158826]
Worcester, Peter F.
Dzieciuch, Matthew A.
Mercer, James A.
Andrew, Rex K.
Dushaw, Brian D.
Baggeroer, Arthur B.
Heaney, Kevin D.
D'Spain, Gerald L.
Colosi, John A.
Stephen, Ralph A.
Kemp, John N.
Howe, Bruce M.
Van Uffelen, Lora J.
Wage, Kathleen E.
A series of experiments conducted in the Philippine Sea during 2009-2011 investigated deep-water acoustic propagation and ambient noise in this oceanographically and geologically complex region: (i) the 2009 North Pacific Acoustic Laboratory (NPAL) Pilot Study/Engineering Test, (ii) the 2010-2011 NPAL Philippine Sea Experiment, and (iii) the Ocean Bottom Seismometer Augmentation of the 2010-2011 NPAL Philippine Sea Experiment. The experimental goals included (a) understanding the impacts of fronts, eddies, and internal tides on acoustic propagation, (b) determining whether acoustic methods, together with other measurements and ocean modeling, can yield estimates of the time-evolving ocean state useful for making improved acoustic predictions, (c) improving our understanding of the physics of scattering by internal waves and spice, (d) characterizing the depth dependence and temporal variability of ambient noise, and (e) understanding the relationship between the acoustic field in the water column and the seismic field in the seafloor. In these experiments, moored and ship-suspended low-frequency acoustic sources transmitted to a newly developed distributed vertical line array receiver capable of spanning the water column in the deep ocean. The acoustic transmissions and ambient noise were also recorded by a towed hydrophone array, by acoustic Seagliders, and by ocean bottom seismometers. (C) 2013 Acoustical Society of America.
Van Uffelen, Lora J.
Howe, Bruce M.
Nosal, Eva-Marie
Carter, Glenn S.
Worcester, Peter F.
Dzieciuch, Matthew A.
Broadband acoustic source transmissions recorded on Seagliders at ranges up to 700 km are used to estimate subsurface glider position. Because the sources transmitted at 9-min intervals the glider moved appreciably between source receptions. Source-glider ranges estimated from acoustic arrivals were combined using least squares analysis to estimate glider position and velocity during each reception period. The analysis was applied to 387 sets of source transmissions using three different flight models of glider subsurface motion for initial position input values. The offsets between the position estimated from the flight models and the acoustically derived position resulting from the inversions were 600-900-m root mean square ( rms) depending upon the model and input parameters. The offsets were tripled if the positions from the flight models were not corrected for a dive-averaged current ( DAC). Estimates of a posteriori errors ranged from 78-105- m rms and from 9.1-11.6-cm/s rms for glider position and velocity, respectively. Data residuals were on the order of 50-m rms, a dramatic reduction from 178-m rms, which was documented for the case neglecting the motion of the glider between subsequent source transmissions ( Van Uffelen et al., J. Acoust. Soc. Amer., vol. 134, pp. 3260-3271, 2013). Overall horizontal glider speed was estimated to be approximately 21-cm/s rms.