Creat membership Creat membership
Sign in

Forgot password?

Confirm
  • Forgot password?
    Sign Up
  • Confirm
    Sign In
Creat membership Creat membership
Sign in

Forgot password?

Confirm
  • Forgot password?
    Sign Up
  • Confirm
    Sign In
Collection
For ¥0.57 per day, unlimited downloads CREATE MEMBERSHIP Download

toTop

If you have any feedback, Please follow the official account to submit feedback.

Turn on your phone and scan

home > search >

Analysis of a two-grid method for semiconductor device problem

Author:
Ying LIU[1,2]  Yanping CHEN  Yunqing HUANG  Qingfeng LI    


Journal:
应用数学和力学:英文版


Issue Date:
2021


Abstract(summary):

The mathematical model of a semiconductor device is governed by a system of quasi-linear partial differential equations.The electric potential equation is approximated by a mixed finite element method,and the concentration equations are approximated by a standard Galerkin method.We estimate the error of the numerical solutions in the sense of the Lqnorm.To linearize the full discrete scheme of the problem,we present an efficient two-grid method based on the idea of Newton iteration.The main procedures are to solve the small scaled nonlinear equations on the coarse grid and then deal with the linear equations on the fine grid.Error estimation for the two-grid solutions is analyzed in detail.It is shown that this method still achieves asymptotically optimal approximations as long as a mesh size satisfies H=O(h^1/2).Numerical experiments are given to illustrate the efficiency of the two-grid method.


Page:
16


VIEW PDF

The preview is over

If you wish to continue, please create your membership or download this.

Create Membership

Similar Literature

Submit Feedback

This function is a member function, members do not limit the number of downloads