Creat membership Creat membership
Sign in

Forgot password?

Confirm
  • Forgot password?
    Sign Up
  • Confirm
    Sign In
Creat membership Creat membership
Sign in

Forgot password?

Confirm
  • Forgot password?
    Sign Up
  • Confirm
    Sign In
Collection
For ¥0.57 per day, unlimited downloads CREATE MEMBERSHIP Download

toTop

If you have any feedback, Please follow the official account to submit feedback.

Turn on your phone and scan

home > search >

An 11-Bit 250-nW 10-kS/s SAR ADC With Doubled Input Range for Biomedical Applications

Author:
Sadollahi, Mahmoud   Hamashita, Koichi   Sobue, Kazuki   Temes, Gabor C.   


Journal:
IEEE Transactions on Circuits and Systems I: Regular Papers


Issue Date:
2017


Abstract(summary):

This paper presents a low-power, area-efficient 11-b single-ended successive-approximation-register (SAR) analog-to-digital converter (ADC) targeted for biomedical applications. The design features an energy-efficient switching technique with an error cancelling capacitor network. The input range is twice the reference voltage. The ADC's loading of the previous stage is reduced by using a single-ended structure, and by eliminating the largest capacitor in the array. The common mode voltage of the input signal can be used as reference voltage. All building blocks were designed in subthreshold for power efficiency, with an asynchronous self-controlled SAR logic. The ADC was fabricated in 0.18-mu m CMOS 2P4M process. The measured peak SNDR was 60.5 dB, the SFDR was 72 dB, the DNL +0.6/-0.37 LSB, and the INL +0.94/-0.89 LSB. The total power consumption was 250 nW from 0.75-V supply voltage.


VIEW PDF

The preview is over

If you wish to continue, please create your membership or download this.

Create Membership

Similar Literature

Submit Feedback

This function is a member function, members do not limit the number of downloads