Creat membership Creat membership
Sign in

Forgot password?

Confirm
  • Forgot password?
    Sign Up
  • Confirm
    Sign In
Creat membership Creat membership
Sign in

Forgot password?

Confirm
  • Forgot password?
    Sign Up
  • Confirm
    Sign In
Collection
For ¥0.57 per day, unlimited downloads CREATE MEMBERSHIP Download

toTop

If you have any feedback, Please follow the official account to submit feedback.

Turn on your phone and scan

home > search >

Carbon dioxide released from subduction zones by fluid-mediated reactions

Author:
Ague, Jay J.   Nicolescu, Stefan   


Journal:
Nature Geoscience


Issue Date:
2014


Abstract(summary):

The balance between the subduction of carbonate mineral-bearing rocks into Earth's mantle and the return of CO 2 to the atmosphere by volcanic and metamorphic degassing is critical to the carbon cycle. Carbon is thought to be released from subducted rocks mostly by simple devolatilization reactions. However, these reactions will also retain large amounts of carbon within the subducting slab and have difficulty in accounting for the mass of CO 2 emitted from volcanic arcs. Carbon release may therefore occur via fluid-induced dissolution of calcium carbonate. Here we use carbonate delta 18O and delta 13C systematics, combined with analyses of rock and fluid inclusion mineralogy and geochemistry, to investigate the alteration of the exhumed Eocene Cycladic subduction complex on the Syros and Tinos islands, Greece. We find that in marble rocks adjacent to two fluid conduits that were active during subduction, the abundance of calcium carbonate drastically decreases approaching the conduits, whereas silicate minerals increase. Up to 60-90% of the CO 2 was released from the rocks-far greater than expected via simple devolatilization reactions. The delta 18O of the carbonate minerals is 5-10 lighter than is typical for metamorphosed carbonate rocks, implying that isotopically light oxygen was transported by fluid infiltration from the surroundings. We suggest that fluid-mediated carbonate mineral removal, accompanied by silicate mineral precipitation, provides a mechanism for the release of enormous amounts of CO 2 from subduction zones.


VIEW PDF

The preview is over

If you wish to continue, please create your membership or download this.

Create Membership

Similar Literature

Submit Feedback

This function is a member function, members do not limit the number of downloads