Creat membership Creat membership
Sign in

Forgot password?

Confirm
  • Forgot password?
    Sign Up
  • Confirm
    Sign In
Creat membership Creat membership
Sign in

Forgot password?

Confirm
  • Forgot password?
    Sign Up
  • Confirm
    Sign In
Collection
For ¥0.57 per day, unlimited downloads CREATE MEMBERSHIP Download

toTop

If you have any feedback, Please follow the official account to submit feedback.

Turn on your phone and scan

home > search >

An 11-bit 22-MS/s 0.6 mW SAR ADC with parasitic capacitance compensation

Author:
Gu, Weiru   Ye, Fan   Ren, Junyan   


Journal:
Journal of Semiconductors


Issue Date:
2014


Abstract(summary):

This paper presents an 11-bit 22-MS/s 0.6-mW successive approximation register (SAR) analog-to-digital converter (ADC) using SMIC 65-nm low leakage (LL) CMOS technology with a 1.2 V supply voltage. To reduce the total capacitance and core area the split capacitor architecture is adopted. But in high resolution ADCs the parasitic capacitance in the LSB-side would decrease the linearity of the ADC and it is hard to calibrate. This paper proposes a parasitic capacitance compensation technique to cancel the effect with no calibration circuits. Moreover, dynamic circuits are used to minimize the switching power of the digital logic and also can reduce the latency time. The prototype chip realized an 11-bit SAR ADC fabricated in SMIC 65-nm CMOS technology with a core area of 300 times 200 mum 2. It shows a sampling rate of 22 MS/s and low power dissipation of 0.6 mW at a 1.2 V supply voltage. At low input frequency the signal-to-noise-and-distortion ratio (SNDR) is 59.3 dB and the spurious-free dynamic range is 72.2 dB. The peak figure-of-merit is 36.4 fJ/conversion-step.


VIEW PDF

The preview is over

If you wish to continue, please create your membership or download this.

Create Membership

Similar Literature

Submit Feedback

This function is a member function, members do not limit the number of downloads