Creat membership Creat membership
Sign in

Forgot password?

Confirm
  • Forgot password?
    Sign Up
  • Confirm
    Sign In
Creat membership Creat membership
Sign in

Forgot password?

Confirm
  • Forgot password?
    Sign Up
  • Confirm
    Sign In
Collection
For ¥0.57 per day, unlimited downloads CREATE MEMBERSHIP Download

toTop

If you have any feedback, Please follow the official account to submit feedback.

Turn on your phone and scan

home > search >

Short-range order strengthening in boron-doped high-entropy alloys for cryogenic applications

Author:
Seol, Jae Bok  Bae, Jae Wung  Kim, Jung Gi  Sung, Hyokyung  Li, Zhiming  Lee, Hyun Hwi  Shim, Sang Hun  Jang, Jae Hoon  Ko, Won-Seok  Hong, Sun Ig  Kim, Hyoung Seop  


Journal:
ACTA MATERIALIA


Issue Date:
2020


Abstract(summary):

Boron doping with an adequate concentration is highly desirable for alloy development because it profoundly improves the material's interface cohesion via interfacial segregation. However, scientific and applicable potentials of soluble boron that resides at the alloy internal grains are generally overlooked. Here we report a strategy for overcoming the typically low strengths of face-centered cubic high-entropy alloys (HEAs) through exploiting soluble boron instead of the interfacial boron. We find that soluble boron increases stress strain field at the recrystallized HEA grain structure, leading to the generation of short-range order (SRO) in those deformation structure under load at 77 K. The highly increased degree of SRO at planar dislocation slip band that forms during straining, proved by electron microscopy and synchrotron X-ray diffraction, strengthens a typical non-equimolar Fe40Mn40Co10Cr10 (at%) HEA, particularly increasing yield strengths by similar to 32%, to similar to 1.1 GPa compared to those of boron-free reference materials with similar grain sizes. The advent of deformation-induced SRO domains causes severe lattice distortion (specifically, contraction), leading to the increased cryogenic yield strength of similar to 210 MPa, but generating micro-voids at grain boundaries. This study on deformation-induced SRO via boron advances the fundamental understanding of SRO impacts on HEA grains and mechanical properties at cryogenic temperatures, which may pave a general pathway for developing a wide range of ultrastrong alloys for cryogenic applications. (C) 2020 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.


Page:
366---377


VIEW PDF

The preview is over

If you wish to continue, please create your membership or download this.

Create Membership

Similar Literature

Submit Feedback

This function is a member function, members do not limit the number of downloads