Creat membership Creat membership
Sign in

Forgot password?

Confirm
  • Forgot password?
    Sign Up
  • Confirm
    Sign In
Creat membership Creat membership
Sign in

Forgot password?

Confirm
  • Forgot password?
    Sign Up
  • Confirm
    Sign In
Collection
For ¥0.57 per day, unlimited downloads CREATE MEMBERSHIP Download

toTop

If you have any feedback, Please follow the official account to submit feedback.

Turn on your phone and scan

home > search >

Numerical study of submerged impinging jets for power electronics cooling

Author:
Sabato, Massimo  Fregni, Andrea  Stalio, Enrico  Brusiani, Federico  Tranchero, Maurizio  Baritaud, Thierry  


Journal:
INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER


Issue Date:
2019


Abstract(summary):

Advancements in power electronic technologies require devices which are small, reliable and capable of handling large power levels. Despite efficiencies of electronic components are usually above 90%, wasted thermal powers can result in heat flux densities in the order of hundreds of W/cm(2). To avoid degradation in performance and lifetime of these electronic devices, specific active cooling systems need to be adopted and submerged impinging jets represent one of the most promising solutions. In the present paper a numerical study of different cooling jet configurations is presented, and high-efficiency solutions are sought. The configurations investigated are obtained by varying nozzle diameter, aspect ratio, arrangement and number of jets. Simulations are performed on a simplified computational domain which involves a single rectangular chip (representing the heat source) separated from the coolant by a multi-material solid stack. As compared to more classical solutions like pin fins, submerged impinging jets represent an efficient technique for the cooling of power electronics. Heat is exchanged at low pumping power level. Array of jets are flexible in terms of geometry and can be specifically designed to control temperatures in critical spots. (C) 2019 Elsevier Ltd. All rights reserved.


Page:
707---718


VIEW PDF

The preview is over

If you wish to continue, please create your membership or download this.

Create Membership

Similar Literature

Submit Feedback

This function is a member function, members do not limit the number of downloads