Creat membership Creat membership
Sign in

Forgot password?

Confirm
  • Forgot password?
    Sign Up
  • Confirm
    Sign In
Creat membership Creat membership
Sign in

Forgot password?

Confirm
  • Forgot password?
    Sign Up
  • Confirm
    Sign In
Collection
For ¥0.57 per day, unlimited downloads CREATE MEMBERSHIP Download

toTop

If you have any feedback, Please follow the official account to submit feedback.

Turn on your phone and scan

home > search >

Typicality-based collaborative filtering for book recommendation

Author:
Velammal, B. L.  


Journal:
EXPERT SYSTEMS


Issue Date:
2019


Abstract(summary):

Nowadays, personalized recommender system placed an important role to predict the customer needs, interest about particular product in various application domains, which is identified according to the product ratings. During this process, collaborative filtering (CF) has been utilized because it is one of familiar techniques in recommender systems. The conventional CF methods analyse historical interactions of user-item pairs based on known ratings and then use these interactions to produce recommendations. The major challenge in CF is that it needs to calculate the similarity of each pair of users or items by observing the ratings of users on same item, whereas the typicality-based CF determines the neighbours from user groups based on their typicality degree. Typicality-based CF can predict the ratings of users with improved accuracy. However, to eliminate the cold start problem in the proposed recommender system, the demographic filtering method has been employed in addition to the typicality-based CF. A weighted average scheme has been applied on the combined recommendation results of both typicality-based CF and demographic-based CF to produce the best recommendation result for the user. Thereby, the proposed system has been able to achieve a coverage ratio of more than 95%, which indicates that the system is able to provide better recommendation for the user from the available lot of products.


VIEW PDF

The preview is over

If you wish to continue, please create your membership or download this.

Create Membership

Similar Literature

Submit Feedback

This function is a member function, members do not limit the number of downloads