Creat membership Creat membership
Sign in

Forgot password?

Confirm
  • Forgot password?
    Sign Up
  • Confirm
    Sign In
Creat membership Creat membership
Sign in

Forgot password?

Confirm
  • Forgot password?
    Sign Up
  • Confirm
    Sign In
Collection

toTop

If you have any feedback, Please follow the official account to submit feedback.

Turn on your phone and scan

home > search >

Functional characterization of RNA fragments using high-throughput interactome screening

Author:
Jackowiak, Paulina  Lis, Angelika  Luczak, Magdalena  Stolarek, Ireneusz  Figlerowicz, Marek  


Journal:
JOURNAL OF PROTEOMICS


Issue Date:
2019


Abstract(summary):

Populations of small eukaryotic RNAs, in addition to relatively well recognized molecules such as miRNAs or siRNAs, also contain fragments derived from all classes of constitutively expressed non-coding RNAs. It has been recently demonstrated that the formation and accumulation of RNA fragments (RFs) is cell-/tissue-specific and depends on internal and external stimuli. Unfortunately, the mechanisms underlying RF biogenesis and function remain unclear. To better understand them, we employed RNA pull-down and mass spectrometry methods to characterize the interactions of seven RFs originating from tRNA, snoRNA and snRNA. By integrating our results with publicly available data on physical protein-protein interactions, we constructed an RF interactome network. We determined that the RF interactome comprises proteins generally different from those that interact with their parental full length RNAs. Proteins captured by the RFs were involved in mRNA splicing, tRNA processing, DNA recombination/replication, protein biosynthesis and carboxylic acid metabolism. Our data suggest that RFs can be endogenous aptamer-like molecules and potential players in recently revealed RNA-protein regulatory networks. Significance: In the recent decade it has become evident that RNAs with well-known functions (for example tRNA, snoRNA or rRNA) can be cleaved to yield short fragments, whose role in cells remains only partially characterized. At the same time, unconventional interactions between mRNA and proteins without RNA-binding domains have been demonstrated, revealing novel layers of possible RNA-mediated regulation. Considering the above, we hypothesized that RNA fragments (RFs) can be endogenous aptamer-like molecules that unconventionally interact with proteins. In this study we identified protein partners of seven selected RFs. We found that RFs bind different set of proteins than their parental full length RNAs and identified proteins differentially bound by the particular RFs. These observations suggest biological relevance of the discovered interactions. Our data provide a novel perspective on the significance of RFs and point to this pool of molecules as to a rich collection of potential components of the recently discovered RNA-protein regulatory networks.


Page:
173---183


Similar Literature

Submit Feedback

This function is a member function, members do not limit the number of downloads