Creat membership Creat membership
Sign in

Forgot password?

Confirm
  • Forgot password?
    Sign Up
  • Confirm
    Sign In
Creat membership Creat membership
Sign in

Forgot password?

Confirm
  • Forgot password?
    Sign Up
  • Confirm
    Sign In
Collection
For ¥0.57 per day, unlimited downloads CREATE MEMBERSHIP Download

toTop

If you have any feedback, Please follow the official account to submit feedback.

Turn on your phone and scan

home > search >

The influence of deep mantle compositional heterogeneity on Earth's thermal evolution

Author:
Li, Mingming  McNamara, Allen K.  


Journal:
EARTH AND PLANETARY SCIENCE LETTERS


Issue Date:
2018


Abstract(summary):

The seismically-observed large low shear velocity provinces in the Earth's lowermost mantle have been hypothesized to be caused by thermochemical piles of compositionally distinct, more-primitive material which may be remnants of Earth's early differentiation. However, one critical question is how the Earth's thermal evolution is affected by the long-term presence of the large-scale compositional heterogeneity in the lowermost mantle. Here, we perform geodynamical calculations to investigate the time evolution of the morphology of large-scale compositional heterogeneity and its influence on the Earth's long-term thermal evolution. Our results show that a global layer of intrinsically dense material in the lowermost mantle significantly suppresses the CMB heat flux, which leads to faster cooling of the background mantle relative to an isochemical mantle. As the background mantle cools, the intrinsically dense material is gradually pushed into isolated thermochemical piles by cold downwellings. The size of the piles also decreases with time due to entraining of pile material into the background mantle. The morphologic change of the accumulations of intrinsic dense material eventually causes a gradual increase of CMB heat flux, which significantly reduces the cooling rate of Earth's mantle. (C) 2018 Elsevier B.V. All rights reserved.


Page:
86---96


VIEW PDF

The preview is over

If you wish to continue, please create your membership or download this.

Create Membership

Similar Literature

Submit Feedback

This function is a member function, members do not limit the number of downloads