Creat membership Creat membership
Sign in

Forgot password?

Confirm
  • Forgot password?
    Sign Up
  • Confirm
    Sign In
Creat membership Creat membership
Sign in

Forgot password?

Confirm
  • Forgot password?
    Sign Up
  • Confirm
    Sign In
Collection
For ¥0.57 per day, unlimited downloads CREATE MEMBERSHIP Download

toTop

If you have any feedback, Please follow the official account to submit feedback.

Turn on your phone and scan

home > search >

Multistate storage nonvolatile memory device based on ferroelectricity and resistive switching effects of SrBi2Ta2O9 films

Author:
Song, Zhiwei  Li, Gang  Xiong, Ying  Cheng, Chuanpin  Zhang, Wanli  Tang, Minghua  Li, Zheng  He, Jiangheng  


Journal:
SEMICONDUCTOR SCIENCE AND TECHNOLOGY


Issue Date:
2018


Abstract(summary):

A memory device with a Pt/SrBi2Ta2O9(SBT)/Pt(111) structure was shown to have excellent combined ferroelectricity and resistive switching properties, leading to higher multistate storage memory capacity in contrast to ferroelectric memory devices. In this device, SBT polycrystalline thin films with significant (115) orientation were fabricated on Pt(111)/Ti/SiO2/Si(100) substrates using CVD (chemical vapor deposition) method. Measurement results of the electric properties exhibit reproducible and reliable ferroelectricity switching behavior and bipolar resistive switching effects (BRS) without an electroforming process. The ON/OFF ratio of the resistive switching was found to be about 10(3). Switching mechanisms for the low resistance state (LRS) and high resistance state (HRS) currents are likely attributed to the Ohmic and space charge-limited current (SCLC) behavior, respectively. Moreover, the ferroelectricity and resistive switching effects were found to be mutually independent, and the four logic states were obtained by controlling the periodic sweeping voltage. This work holds great promise for nonvolatile multistate memory devices with high capacity and low cost.


VIEW PDF

The preview is over

If you wish to continue, please create your membership or download this.

Create Membership

Similar Literature

Submit Feedback

This function is a member function, members do not limit the number of downloads