Creat membership Creat membership
Sign in

Forgot password?

Confirm
  • Forgot password?
    Sign Up
  • Confirm
    Sign In
Creat membership Creat membership
Sign in

Forgot password?

Confirm
  • Forgot password?
    Sign Up
  • Confirm
    Sign In
Collection
For ¥0.57 per day, unlimited downloads CREATE MEMBERSHIP Download

toTop

If you have any feedback, Please follow the official account to submit feedback.

Turn on your phone and scan

home > search >

Unsteady-State Diffusion of Gas in Coals and Its Relationship with Coal Pore Structure

Author:
Guo, Haijun  Cheng, Yuanping  Yuan, Liang  Wang, Liang  Zhou, Hongxing  


Journal:
ENERGY & FUELS


Issue Date:
2016


Abstract(summary):

Coalbed methane (CBM) is under consideration as a potential energy resource because of its global abundance. The exploitation and development of CBM depends on the correct characterization of coal structure and gas migration properties. In this paper, four coal samples with different degrees of metamorphism were collected from the northern China mining area. The gas desorption properties of these samples were studied using a modified gas desorption experimental setup. A nonconstant diffusion coefficient (non-CDC) model was introduced to analyze the gas diffusion properties. In addition, both mercury intrusion porosimetry (MIP) and low-pressure nitrogen gas adsorption (LP-N(2)GA) were used to investigate the coal pore structure. The results indicate that gas desorption and diffusion vary significantly in coal samples with different degrees of metamorphism and that the non-CDC model could accurately describe gas diffusion in coal. In bituminous and anthracite coal, gas desorption and diffusion abilities increased with the increasing degree of metamorphism, but both properties were greater in lignite coal. Comparing the pore structure characteristics and the gas desorption and diffusion properties showed that lignite's particular pore structure resulted in a higher gas adsorption capacity than for high-volatility bituminous coal. The initial desorption and diffusion in lignite were also greater than in medium-volatility bituminous coal or anthracite coal. These results suggest that lignite has significant potential for CBM exploitation and development.


Page:
7014---7024


VIEW PDF

The preview is over

If you wish to continue, please create your membership or download this.

Create Membership

Similar Literature

Submit Feedback

This function is a member function, members do not limit the number of downloads