Creat membership Creat membership
Sign in

Forgot password?

Confirm
  • Forgot password?
    Sign Up
  • Confirm
    Sign In
Creat membership Creat membership
Sign in

Forgot password?

Confirm
  • Forgot password?
    Sign Up
  • Confirm
    Sign In
Collection
For ¥0.57 per day, unlimited downloads CREATE MEMBERSHIP Download

toTop

If you have any feedback, Please follow the official account to submit feedback.

Turn on your phone and scan

home > search >

Properties of Ti/TiC Interfaces from Molecular Dynamics Simulations

Author:
Liang, Tao  Ashton, Michael  Choudhary, Kamal  Zhang, Difan  Fonseca, Alexandre F.  Revard, Benjamin C.  Hennig, Richard G.  Phillpot, Simon R.  Sinnott, Susan B.  


Journal:
JOURNAL OF PHYSICAL CHEMISTRY C


Issue Date:
2016


Abstract(summary):

Titanium carbide is used as a primary component in coating materials, thin films for electronic devices, and composites. Here, the structure of coherent and semicoherent interfaces formed between close-packed. TiC (111) and Ti (0001) is investigated in classical molecular dynamics simulations. The forces on the atoms in the simulations are determined using a newly developed TiC potential under the framework of the third-generation charge optimized many-body (COMB3) suite of potentials. The work of adhesion energies for the coherent interfaces is calculated and compared with the predictions of density functional theory calculations. In the case of relaxed semicoherent interfaces, a two-dimensional (2D) misfit dislocation network is predicted to form that separates the interface into different regions in which the positions of the atoms are similar to the positions at the corresponding coherent interfaces. After the interface is annealed at an elevated temperature, the climb of edge dislocations is activated which modifies the 2D misfit dislocation network and increases the work of adhesion. These findings can be used as inputs for sequential larger simulation models to understand and predict the macroscopic properties of TiC/Ti interfaces.


Page:
12530---12538


VIEW PDF

The preview is over

If you wish to continue, please create your membership or download this.

Create Membership

Similar Literature

Submit Feedback

This function is a member function, members do not limit the number of downloads