Creat membership Creat membership
Sign in

Forgot password?

Confirm
  • Forgot password?
    Sign Up
  • Confirm
    Sign In
Creat membership Creat membership
Sign in

Forgot password?

Confirm
  • Forgot password?
    Sign Up
  • Confirm
    Sign In
Collection
For ¥0.57 per day, unlimited downloads CREATE MEMBERSHIP Download

toTop

If you have any feedback, Please follow the official account to submit feedback.

Turn on your phone and scan

home > search >

Interface control of domain wall depinning field

Author:
Huang, Yangqi  Li, Xiang  Wang, Lezhi  Yu, Guoqiang  Wang, Kang L.  Zhao, Weisheng  


Journal:
AIP ADVANCES


Issue Date:
2018


Abstract(summary):

We study the impact of Mg insertion layer at the CoFeBIMgO interface on the domain wall depinning field and motion as well as other magnetic properties in a perpendicular magnetized Ta/CoFeB/Mg(wedged)/MgO structure. With the increase of the Mg layer from 0.4 nm to 0.8 nm, the field-induced domain wall moving velocity increases while the depinning field decreases. The minimum depinning field of around 10 Oe for as-grown sample and 7 Oe for annealed sample is found with a 0.8 nm Mg insertion layer, which is 2 times lower than the ones reported before. Further increase of the Mg layer leads to a lower velocity and higher depinning field. Similar phenomena happens to the magnetic properties such as the saturation magnetization and perpendicular magnetic anisotropy. Both for as-grown and annealed samples, the tendency is similar. This may be explained by the oxidation and crystallinity manipulation of the CoFeBIMgO interface. These results show an ultra-low depinning field in the Ta/CoFeB/MgO system as well as a possible way for controlling the depinning field. (C) 2018 Author(s).


VIEW PDF

The preview is over

If you wish to continue, please create your membership or download this.

Create Membership

Similar Literature

Submit Feedback

This function is a member function, members do not limit the number of downloads