Creat membership Creat membership
Sign in

Forgot password?

Confirm
  • Forgot password?
    Sign Up
  • Confirm
    Sign In
Creat membership Creat membership
Sign in

Forgot password?

Confirm
  • Forgot password?
    Sign Up
  • Confirm
    Sign In
Collection
For ¥0.57 per day, unlimited downloads CREATE MEMBERSHIP Download

toTop

If you have any feedback, Please follow the official account to submit feedback.

Turn on your phone and scan

home > search >

The impact trajectory of asteroid 2008 TC3

Author:
Farnocchia, Davide  Jenniskens, Peter  Robertson, Darrel K.  Chesley, Steven R.  Dimare, Linda  Chodas, Paul W.  


Journal:
ICARUS


Issue Date:
2017


Abstract(summary):

The impact of asteroid 2008 TC3 was an unprecedented event the first ever predicted impact of a near Earth object. When it was first detected about 20 h before impact, 2008 TC3 was still farther away than the Moon. Once it was recognized as an impactor and announced as such, 2008 TC3 began to receive considerable attention from astronomical observers. Using the unprecedented dataset of nearly 900 astrometric observations and the latest observation debiasing and weighting techniques, we estimate the precise trajectory of 2008 TC3 and its impact ground track. At the entry point into the atmosphere, the 3-sigma formal uncertainty in predicted position is an ellipse only 1.4 km x 0.15 km in size. The locations of the many meteorites recovered from the desert floor mark the asteroid's actual ground track and provide a unique opportunity to validate trajectory models. We find that the second-order zonal harmonics of the Earth gravity field moves the ground track by more than 1 km and the location along the ground track by more than 2 km, while non-zonal and higher order harmonics change the impact prediction by less than 20 m. The contribution of atmospheric drag to the trajectory of 2008 TC3 is similar to the numerical integration error level, a few meters, down to an altitude of 50 km. Integrating forward to lower altitudes and ignoring the break-up of 2008 TC3, atmospheric drag causes an along -track deviation that can be as large as a few kilometers at sea level. (C) 2017 Elsevier Inc. All rights reserved.


Page:
218---226


VIEW PDF

The preview is over

If you wish to continue, please create your membership or download this.

Create Membership

Similar Literature

Submit Feedback

This function is a member function, members do not limit the number of downloads