Creat membership Creat membership
Sign in

Forgot password?

Confirm
  • Forgot password?
    Sign Up
  • Confirm
    Sign In
Creat membership Creat membership
Sign in

Forgot password?

Confirm
  • Forgot password?
    Sign Up
  • Confirm
    Sign In
Collection
For ¥0.57 per day, unlimited downloads CREATE MEMBERSHIP Download

toTop

If you have any feedback, Please follow the official account to submit feedback.

Turn on your phone and scan

home > search >

Sweeping Jet Film Cooling on a Turbine Vane

Author:
Hossain, Mohammad A.  Agricola, Lucas  Ameri, Ali  Gregory, James W.  Bons, Jeffrey P.  


Journal:
JOURNAL OF TURBOMACHINERY-TRANSACTIONS OF THE ASME


Issue Date:
2019


Abstract(summary):

The cooling performance of sweeping jet film cooling was studied on a turbine vane suction surface in a low-speed linear cascade wind tunnel. The sweeping jet holes consist of fluidic oscillators with an aspect ratio (AR) of unity and a hole spacing of P-d/D =3D 6. Infrared (IR) thermography was used to estimate the adiabatic film effectiveness at several blowing ratios and two different freestream turbulence levels (Tu =3D 0.3% and 6.1%). Convective heat transfer coefficient was measured by a transient IR technique, and the net heat flux benefit was calculated. The total pressure loss due to sweeping jet film cooling was characterized by traversing a total pressure probe at the exit plane of the cascade. Tests were performed with a baseline shaped hole (SH) (777-shaped hole) for comparison. The sweeping jet hole showed higher adiabatic film effectiveness than the 777-shaped hole in the near hole region. Although the unsteady sweeping action of the jet augments heat transfer, the net positive cooling benefit is higher for sweeping jet holes compared to 777 hole at particular flow conditions. The total pressure loss measurement showed a 12% increase in total pressure loss at a blowing ratio of M =3D 1.5 for sweeping jet hole, while 777-shaped hole showed a 8% total pressure loss increase at the corresponding blowing ratio.


VIEW PDF

The preview is over

If you wish to continue, please create your membership or download this.

Create Membership

Similar Literature

Submit Feedback

This function is a member function, members do not limit the number of downloads