Creat membership Creat membership
Sign in

Forgot password?

Confirm
  • Forgot password?
    Sign Up
  • Confirm
    Sign In
Creat membership Creat membership
Sign in

Forgot password?

Confirm
  • Forgot password?
    Sign Up
  • Confirm
    Sign In
Collection
For ¥0.57 per day, unlimited downloads CREATE MEMBERSHIP Download

toTop

If you have any feedback, Please follow the official account to submit feedback.

Turn on your phone and scan

home > search >

Effects of bedding on the dynamic indirect tensile strength of coal: Laboratory experiments and numerical simulation

Author:
Yixin Zhao  Gao-Feng Zhao  Yaodong Jiang  Derek Elsworth  Yaqiong Huang  


Journal:
International Journal of Coal Geology


Issue Date:
2014


Abstract(summary):

Abstract Dynamic indirect tensile tests were carried out by using a Split Hopkinson Pressure Bar (SHPB) for coal sampled from the Datong mine in China. The principal purpose was to explore the influence of bedding structure in the coal on its dynamic indirect tensile strength. However, to resolve some contradictions, X-ray micro CT, high speed optical imaging and a discrete element based modelling approach were combined to analyze the test results. The X-ray micro CT was used to detect the actual bedding structure in the coal; the high speed imaging captured failure patterns of the specimens with different bedding directions; and the numerical modelling was utilized to investigate the influence of different bedding structures on dynamic strength. The SHPB and numerical results illustrate that dynamic indirect tensile strength reliably correlates with impact velocity. In addition, the dynamic indirect tensile strength is not only influenced by the bedding direction but also by the roughness and discontinuity of the bedding. Based on these findings, a method is developed to further process the test data including a model to describe the dynamic indirect tensile strength of Datong coal. Highlights • Dynamic indirect tensile tests of coal were carried out by using a Split Hopkinson Pressure Bar. • X-ray CT and discrete element approach were combined to analyze the results. • The strength was found to be reliably correlated with impact velocity. • The strength is influenced by the bedding direction, roughness and discontinuity.


Page:
81-81


VIEW PDF

The preview is over

If you wish to continue, please create your membership or download this.

Create Membership

Similar Literature

Submit Feedback

This function is a member function, members do not limit the number of downloads