Creat membership Creat membership
Sign in

Forgot password?

Confirm
  • Forgot password?
    Sign Up
  • Confirm
    Sign In
Creat membership Creat membership
Sign in

Forgot password?

Confirm
  • Forgot password?
    Sign Up
  • Confirm
    Sign In
Collection
For ¥0.57 per day, unlimited downloads CREATE MEMBERSHIP Download

toTop

If you have any feedback, Please follow the official account to submit feedback.

Turn on your phone and scan

home > search >

A 10-bit 50 MS/s SAR ADC in 65 nm CMOS with on-chip reference voltage buffer

Author:
Prakash Harikumar  J. Jacob Wikner  


Journal:
Integration


Issue Date:
2015


Abstract(summary):

Abstract This paper presents the design of a 10-bit, 50 MS/s successive approximation register (SAR) analog-to-digital converter (ADC) with an on-chip reference voltage buffer implemented in 65 nm CMOS process. The speed limitation on SAR ADCs with off-chip reference voltage and the necessity of a fast-settling reference voltage buffer are elaborated. Design details of a high-speed reference voltage buffer which ensures precise settling of the DAC output voltage in the presence of bondwire inductances are provided. The ADC uses bootstrapped switches for input sampling, a double-tail high-speed dynamic comparator and split binary-weighted capacitive array charge redistribution DACs. The split binary-weighted array DAC topology helps us to achieve low area and less capacitive load and thus enhances power efficiency. Top-plate sampling is utilized in the DAC to reduce the number of switches. In post-layout simulation which includes the entire pad frame and associated parasitics, the ADC achieves an ENOB of 9.25 bits at a supply voltage of 1.2 V, typical process corner and sampling frequency of 50 MS/s for near-Nyquist input. Excluding the reference voltage buffer, the ADC consumes 697 μW and achieves an energy efficiency of 25 fJ/conversion-step while occupying a core area of 0.055 mm 2 . Highlights • The limitation posed by incomplete DAC settling in medium-to-high speed SAR ADCs is addressed. • The design details of a high-speed reference voltage buffer (RVBuffer) are elaborated. • Estimation of key performance parameters of the RV Buffer are provided. • Post-layout simulation of the full ADC including device noise and IO pad parasitics has been reported.


Page:
28-28


VIEW PDF

The preview is over

If you wish to continue, please create your membership or download this.

Create Membership

Similar Literature

Submit Feedback

This function is a member function, members do not limit the number of downloads