Creat membership Creat membership
Sign in

Forgot password?

Confirm
  • Forgot password?
    Sign Up
  • Confirm
    Sign In
Creat membership Creat membership
Sign in

Forgot password?

Confirm
  • Forgot password?
    Sign Up
  • Confirm
    Sign In
Collection
For ¥0.57 per day, unlimited downloads CREATE MEMBERSHIP Download

toTop

If you have any feedback, Please follow the official account to submit feedback.

Turn on your phone and scan

home > search >

Modeling Argon Gas Behavior in Continuous Casting of Steel

Author:
Hyunjin Yang  Surya P. Vanka  Brian G. Thomas  


Journal:
JOM


Issue Date:
2018


Abstract(summary):

In the continuous casting of steel, argon gas injection through the upper tundish nozzle wall or stopper tip is known to decrease clogging and remove inclusions. In addition to this intended gas injection, gas may be passively aspirated into the flow system by negative pressure developed inside of the nozzle. The injected gas forms gas pockets and bubbles through complex redistribution processes that greatly affect flow in the mold, leading to defects in the final product. Estimating the number and size distribution of bubbles is crucial to optimize multiphase flow in this important manufacturing process. This article introduces an integrated methodology to investigate these phenomena and provides examples to validate the approach. The system features models to predict: gas leakage, pressure distribution in the entire system, gas pockets and the size distribution and trajectories of bubbles using a new hybrid method, and multiphase flow in the nozzle and mold.


Page:
2148–2156


VIEW PDF

The preview is over

If you wish to continue, please create your membership or download this.

Create Membership

Similar Literature

Submit Feedback

This function is a member function, members do not limit the number of downloads