Creat membership Creat membership
Sign in

Forgot password?

Confirm
  • Forgot password?
    Sign Up
  • Confirm
    Sign In
Creat membership Creat membership
Sign in

Forgot password?

Confirm
  • Forgot password?
    Sign Up
  • Confirm
    Sign In
Collection
For ¥0.57 per day, unlimited downloads CREATE MEMBERSHIP Download

toTop

If you have any feedback, Please follow the official account to submit feedback.

Turn on your phone and scan

home > search >

Influence of Rim Seal Purge Flow on the Performance of an Endwall-Profiled Axial Turbine

Author:
Schuepbach, P.   Abhari, R. S.   Rose, M. G.   Gier, J.  


Journal:
Journal of Turbomachinery


Issue Date:
2011


Abstract(summary):

Nonaxisymmetric endwall profiling is a promising method to reduce secondary losses in axial turbines. However, in high-pressure turbines, a small amount of air is ejected at the hub rim seal to prevent the ingestion of hot gases into the cavity between the stator and the rotor disk. This rim seal purge flow has a strong influence on the development of the hub secondary flow structures. This paper presents time-resolved experimental and computational data for a one-and-1/2-stage high work axial turbine, showing the influence of purge flow on the performance of two different nonaxisymmetric endwalls and the axisymmetric baseline case. The experimental total-to-total efficiency assessment reveals that the nonaxisymmetric endwalls lose some of their benefit relative to the baseline case when purge is increased. The first endwall design loses 50% of the efficiency improvement seen with low suction, while the second endwall design exhibits a 34% deterioration. The time-resolved computations show that the rotor dominates the static pressure field at the rim seal exit when purge flow is present. Therefore, the purge flow establishes itself as jets emerging at the blade suction side corner. The jet strength is modulated by the first vane pressure field. The jets introduce circumferential vorticity as they enter the annulus. As the injected fluid is turned around the rotor leading edge, a streamwise vortex component is created. The dominating leakage vortex has the same sense of rotation as the rotor hub passage vortex. The first endwall design causes the strongest circumferential variation in the rim seal exit static pressure field. Therefore, the jets are stronger with this geometry and introduce more vorticity than the other two cases. As a consequence the experimental data at the rotor exit shows the greatest unsteadiness within the rotor hub passage with the first endwall design. [DOI: 10.1115/1.4000578]


Page:
021011


VIEW PDF

The preview is over

If you wish to continue, please create your membership or download this.

Create Membership

Similar Literature

Submit Feedback

This function is a member function, members do not limit the number of downloads