Creat membership Creat membership
Sign in

Forgot password?

Confirm
  • Forgot password?
    Sign Up
  • Confirm
    Sign In
Creat membership Creat membership
Sign in

Forgot password?

Confirm
  • Forgot password?
    Sign Up
  • Confirm
    Sign In
Collection
For ¥0.57 per day, unlimited downloads CREATE MEMBERSHIP Download

toTop

If you have any feedback, Please follow the official account to submit feedback.

Turn on your phone and scan

home > search >

Predictive calculation of carbon dioxide solubility in polymers

Author:
Ru-Ting, Xia   Xing-Yuan, Huang  


Journal:
RSC Adv.


Issue Date:
2015


Abstract(summary):

The solubility of carbon dioxide in polymers has attracted great attention from scientists because it is an important application of green chemistry, and it is widely applied in extraction, separation and the preparation of new materials. In this work, a new solubility prediction model with both good accuracy and efficiency, called CEAPSO KHM RBF ANN, is developed. In the CEAPSO KHM RBF ANN model, an accelerated particle swarm optimization (APSO) algorithm with chaotic disturbance is employed to trim the radial basis function artificial neural network (RBF ANN) connection weights and biases in order to reduce the premature convergence problem, and the K-harmonic means (KHM) clustering method is used to tune the hidden centers and spreads of the radial basis function. The proposed model is employed to investigate the solubility of CO2 in polymers including polypropylene, polystyrene, poly(vinyl acetate), carboxylated polyesters and poly(butylene succinate-co-adipate). The results indicate that the proposed model is an effective method for solubility prediction with better performance and higher efficiency compared with the other methods, and should contribute to the understanding of the phase behaviour of the gas/polymer system and for the design and optimization of processing techniques.





Page:
76979-76986


VIEW PDF

The preview is over

If you wish to continue, please create your membership or download this.

Create Membership

Similar Literature

Submit Feedback

This function is a member function, members do not limit the number of downloads