Creat membership Creat membership
Sign in

Forgot password?

Confirm
  • Forgot password?
    Sign Up
  • Confirm
    Sign In
Creat membership Creat membership
Sign in

Forgot password?

Confirm
  • Forgot password?
    Sign Up
  • Confirm
    Sign In
Collection

toTop

If you have any feedback, Please follow the official account to submit feedback.

Turn on your phone and scan

home > search >

Effect of Combustor Swirl on Transonic High Pressure Turbine Efficiency

Author:
Beard, Paul F.   Smith, Andy D.   Povey, Thomas  


Journal:
Journal of Turbomachinery


Issue Date:
2013


Abstract(summary):

This paper presents an experimental and computational study of the effect of inlet swirl on the efficiency of a transonic turbine stage. The efficiency penalty is approximately 1%, but it is argued that this could be recovered by correct design. There are attendant changes in capacity, work function, and stage total-to-total pressure ratio, which are discussed in detail. Experiments were performed using the unshrouded MT1 high-pressure turbine installed in the Oxford Turbine Research Facility (OTRF) (formerly at QinetiQ Farnborough): an engine scale, short duration, rotating transonic facility, in which M, Re, T-gas/T-wall, and N/root T-01 p are matched to engine conditions. The research was conducted under the EU Turbine Aero-Thermal External Flows (TATEF II) program. Turbine efficiency was experimentally determined to within bias and precision uncertainties of approximately +/- 1.4% and +/- 0.2%, respectively, to 95% confidence. The stage mass flow rate was metered upstream of the turbine nozzle, and the turbine power was measured directly using an accurate strain-gauge based torque measurement system. The turbine efficiency was measured experimentally for a condition with uniform inlet flow and a condition with pronounced inlet swirl. Full stage computational fluid dynamics (CFD) was performed using the Rolls-Royce Hydra solver. Steady and unsteady solutions were conducted for both the uniform inlet baseline case and a case with inlet swirl. The simulations are largely in agreement with the experimental results. A discussion of discrepancies is given.


Page:
011002


Similar Literature

Submit Feedback

This function is a member function, members do not limit the number of downloads