Creat membership Creat membership
Sign in

Forgot password?

Confirm
  • Forgot password?
    Sign Up
  • Confirm
    Sign In
Creat membership Creat membership
Sign in

Forgot password?

Confirm
  • Forgot password?
    Sign Up
  • Confirm
    Sign In
Collection
For ¥0.57 per day, unlimited downloads CREATE MEMBERSHIP Download

toTop

If you have any feedback, Please follow the official account to submit feedback.

Turn on your phone and scan

home > search >

Fundamental Cooling Limits for High Power Density Gallium Nitride Electronics

Author:
Won, Yoonjin   Cho, Jungwan   Agonafer, Damena   Asheghi, Mehdi   Goodson, Kenneth E.  


Journal:
IEEE Transactions on Components, Packaging and Manufacturing Technology


Issue Date:
2015


Abstract(summary):

The peak power density of GaN high-electron-mobility transistor technology is limited by a hierarchy of thermal resistances from the junction to the ambient. Here, we explore the ultimate or fundamental cooling limits for junction-to fluid cooling, which are enabled by advanced thermal management technologies, including GaN-diamond composites and nanoengineered heat sinks. Through continued attention to near-junction resistances and extreme flux convection heat sinks, heat fluxes beyond 300 kW/cm2 from individual 2-μm gates and 10 kW/cm2 from the transistor footprint will be feasible. The cooling technologies under discussion here are also applicable to thermal management of 2.5-D and 3-D logic circuits at lower heat fluxes.



Page:
737-744


VIEW PDF

The preview is over

If you wish to continue, please create your membership or download this.

Create Membership

Similar Literature

Submit Feedback

This function is a member function, members do not limit the number of downloads