Creat membership Creat membership
Sign in

Forgot password?

Confirm
  • Forgot password?
    Sign Up
  • Confirm
    Sign In
Creat membership Creat membership
Sign in

Forgot password?

Confirm
  • Forgot password?
    Sign Up
  • Confirm
    Sign In
Collection
For ¥0.57 per day, unlimited downloads CREATE MEMBERSHIP Download

toTop

If you have any feedback, Please follow the official account to submit feedback.

Turn on your phone and scan

home > search >

Mapping Shallow Coastal Ecosystems: A Case Study of a Rhode Island Lagoon

Author:
Stolt, Mark   Bradley, Michael   Turenne, Jim   Payne, Maggie   Scherer, Eric   Cicchetti, Giancarlo   Shumchenia, Emily   Guarinello, Marisa   King, John   Boothroyd, Jon   Oakley, Bryan   Thornber, Carol   August, Peter  


Journal:
Journal of Coastal Research


Issue Date:
2011


Abstract(summary):

STOLT, M.; BRADLEY, M.; TURENNE, J.; PAYNE, M.; SCHERER, E.; CICCHETTI, G.; SHUMCHENIA, E.; GUARINELLO, M.; KING, J.; BOOTHROYD, J.; OAKLEY, B.; THORNBER, C., and AUGUST, P., 2011. Mapping shallow coastal ecosystems: a case study of a Rhode Island lagoon. Journal of Coastal Research, 27(6A), 1-15. West Palm Beach (Florida), ISSN 0749-0208. In order to effectively study, manage, conserve, and sustain shallow-subtidal ecosystems, a spatial inventory of the basic resources and habitats is essential. Because of the complexities of shallow-subtidal substrates, benthic communities, geology, geomorphology, and water column attributes, few standard protocols are fully articulated and tested that describe the mapping and inventory processes and accompanying interpretations. In this paper, we describe a systematic approach to map Rhode Island's shallow-subtidal coastal lagoon ecosystems, by using, integrating, and reconciling multiple data sets to identify the geology, soils, biological communities, and environments that, collectively, define each shallow-subtidal habitat. We constructed maps for these lagoons via a deliberate, step by step approach. Acoustics and geostatistical modeling were used to create a bathymetric map. These data were analyzed to identify submerged landforms and geologic boundaries. Geologic interpretations were verified with video and grab samples. Soils were sampled, characterized, and mapped within the context of the landscape and geologic boundaries. Biological components and distributions were investigated using acoustics, grab samples, video, and sediment profile images. Data sets were cross-referenced and ground-truthed to test for inconsistencies. Maps and geospatial data, with Federal Geographic Data Committee (FGDC)-compliant metadata, were finalized after reconciling data set inconsistencies and made available on the Internet. These data allow for classification in the revised Coastal and Marine Ecological Classification Standard (CMECS). With these maps, we explored potential relationships among and between physical and biological parameters. In some cases, we discovered a clear match between habitat measures; in others, however, relationships were more difficult to distinguish and require further investigation.


Page:
1-15


VIEW PDF

The preview is over

If you wish to continue, please create your membership or download this.

Create Membership

Similar Literature

Submit Feedback

This function is a member function, members do not limit the number of downloads