Creat membership Creat membership
Sign in

Forgot password?

Confirm
  • Forgot password?
    Sign Up
  • Confirm
    Sign In
Creat membership Creat membership
Sign in

Forgot password?

Confirm
  • Forgot password?
    Sign Up
  • Confirm
    Sign In
Collection

toTop

If you have any feedback, Please follow the official account to submit feedback.

Turn on your phone and scan

home > search >

There is room for selection in a small local pig breed when using optimum contribution selection: A simulation study

Author:
Gourdine, J. L.   Sorensen, A. C.   Rydhmer, L.  


Journal:
Journal of Animal Science


Issue Date:
2012


Abstract(summary):

Selection progress must be carefully balanced against the conservation of genetic variation in small populations of local breeds. Well-defined breeding programs with specified selection traits are rare in local pig breeds. Given the small population size, the focus is often on the management of genetic diversity. However, in local breeds, optimum contribution selection can be applied to control the rate of inbreeding and to avoid reduced performance in traits with high market value. The aim of this study was to assess the extent to which a breeding program aiming for improved product quality in a small local breed would be feasible. We used stochastic simulations to compare 25 scenarios. The scenarios differed in size of population, selection intensity of boars, type of selection (random selection, truncation selection based on BLUP breeding values, or optimum contribution selection based on BLUP breeding values), and heritability of the selection trait. It was assumed that the local breed is used in an extensive system for a high-meatquality market. The simulations showed that in the smallest population (300 female reproducers), inbreeding increased by 0.8% when selection was performed at random. With optimum contribution selection, genetic progress can be achieved that is almost as great as that with truncation selection based on BLUP breeding values (0.2 to 0.5 vs. 0.3 to 0.5 genetic SD, P < 0.05), but at a considerably decreased rate of inbreeding (0.7 to 1.2 vs. 2.3 to 5.7%, P < 0.01). This confirmation of the potential utilization of OCS even in small populations is important in the context of sustainable management and the use of animal genetic resources.


Page:
76-84


Similar Literature

Submit Feedback

This function is a member function, members do not limit the number of downloads