Creat membership Creat membership
Sign in

Forgot password?

Confirm
  • Forgot password?
    Sign Up
  • Confirm
    Sign In
Creat membership Creat membership
Sign in

Forgot password?

Confirm
  • Forgot password?
    Sign Up
  • Confirm
    Sign In
Collection
For ¥0.57 per day, unlimited downloads CREATE MEMBERSHIP Download

toTop

If you have any feedback, Please follow the official account to submit feedback.

Turn on your phone and scan

home > search >

Water Absorption and Electrical Conductivity for Internally Cured Mortars with a W/C between 0.30 and 0.45

Author:
Castro, Javier   Spragg, Robert   Weiss, Jason  


Journal:
Journal of Materials in Civil Engineering


Issue Date:
2012


Abstract(summary):

Internal curing has emerged over the last decade as an approach to counteract the negative effects associated with self-desiccation in low water-to-cement ratio (w/c) mixtures. Specifically, much of the early research on internal curing focused on the reduction of autogenous shrinkage. Recent work has demonstrated, however, that internal curing can also be beneficial in reducing drying-shrinkage cracking, reducing the propensity for thermal cracking, reducing fluid absorption, and reducing ion diffusion in concrete. However, several aspects of internal curing still require closer examination. One of these aspects is the application of internal curing for mixtures with a wider range of water-to-cement ratios. This paper describes results from experiments that investigated the potential use of internal curing in mortar systems with w/c ratios of 0.30, 0.36, 0.42, and 0.45 that were cured under sealed conditions, in terms of water absorption and electrical conductivity. Test results show that internal curing reduces the water absorption in all the systems. Similarly, results obtained on electrical conductivity at late ages (1 year) also show a benefit. Care needs to be taken to analyze electrical conductivity results at early ages because of the increased amount of fluid resulting from the inclusion of the prewetted lightweight aggregate. DOI: 10.1061/(ASCE)MT.1943-5533.0000377. (C) 2012 American Society of Civil Engineers.


Page:
223-231


VIEW PDF

The preview is over

If you wish to continue, please create your membership or download this.

Create Membership

Similar Literature

Submit Feedback

This function is a member function, members do not limit the number of downloads