Creat membership Creat membership
Sign in

Forgot password?

Confirm
  • Forgot password?
    Sign Up
  • Confirm
    Sign In
Creat membership Creat membership
Sign in

Forgot password?

Confirm
  • Forgot password?
    Sign Up
  • Confirm
    Sign In
Collection
For ¥0.57 per day, unlimited downloads CREATE MEMBERSHIP Download

toTop

If you have any feedback, Please follow the official account to submit feedback.

Turn on your phone and scan

home > search >

Power monitor miter bends for high-power microwave transmission

Author:
Doane, John   Anderson, James   Grunloh, Howard   Wu, Wen  


Journal:
Fusion Engineering and Design


Issue Date:
2015


Abstract(summary):

Two miter bends are described for monitoring the power transmitted in an oversized corrugated waveguide. One has an array of holes in its mirror that couples a small fraction of the incident power to a rectangular waveguide directly machined into the mirror. Millimeter-wave detectors on the outputs of this miter bend can respond very rapidly to the transmitted power, but the coupling is sensitive to the mode purity in the oversized waveguide. The other miter bend monitors the power by measuring the rise in temperature of the cooling water passing through the mirror. The mirror is well isolated from the miter bend housing to prevent heat from neighboring waveguides from reaching the mirror. The measurement requires about 200 s to reach steady state, but it is relatively insensitive to mode purity. The measurement does require knowledge of the input polarization. Thermo-mechanical analyses of the miter bends indicate that they are capable of reliable operation with 1.5 MW transmitted through them. High-power long-pulse 170 GHz tests of these miter bends at the Japan Atomic Energy Agency (JAEA) are described. (C) 2015 Elsevier B.V. All rights reserved.


Page:
1-8


VIEW PDF

The preview is over

If you wish to continue, please create your membership or download this.

Create Membership

Similar Literature

Submit Feedback

This function is a member function, members do not limit the number of downloads