Creat membership Creat membership
Sign in

Forgot password?

Confirm
  • Forgot password?
    Sign Up
  • Confirm
    Sign In
Creat membership Creat membership
Sign in

Forgot password?

Confirm
  • Forgot password?
    Sign Up
  • Confirm
    Sign In
Collection

toTop

If you have any feedback, Please follow the official account to submit feedback.

Turn on your phone and scan

home > search >

Consolidation of Cu-based amorphous alloy powders by high-pressure torsion

Author:
H. Asgharzadeh  S.-H. Joo  J.-K. Lee  H. S. Kim  


Journal:
Journal of Materials Science


Issue Date:
2015


Abstract(summary):

We applied high-pressure torsion (HPT) for consolidation of gas-atomized metallic glass Cu54Zr22Ti18Ni6 powders into high-density bulk disks. The effects of the number of revolutions (N = 1–5 turns), applied pressure (2.5–10 GPa), and temperature (298–473 K) on densification and structural changes were investigated. The consolidated glassy disks showed an excellent hardness of ~5.2 GPa although a mechanical softening effect along with fragmentation in the center of HPT disks occurred at N > 3 by a couple of branching cracks. The HPT process at higher applied pressures improved the bulk density and inter-particulate bonding, resulting in higher hardness. Increasing the temperature of HPT processing enhanced the densification and deep drawability of the consolidated metallic glass. Although the HPT process did not change the crystallization temperature of the metallic glass powders, it increased the crystallization enthalpy, suggesting the free volume increase and inhibition of a significant nanocrystallization during the HPT process.


Page:
3164-3174


Similar Literature

Submit Feedback

This function is a member function, members do not limit the number of downloads