Creat membership Creat membership
Sign in

Forgot password?

Confirm
  • Forgot password?
    Sign Up
  • Confirm
    Sign In
Creat membership Creat membership
Sign in

Forgot password?

Confirm
  • Forgot password?
    Sign Up
  • Confirm
    Sign In
Collection
For ¥0.57 per day, unlimited downloads CREATE MEMBERSHIP Download

toTop

If you have any feedback, Please follow the official account to submit feedback.

Turn on your phone and scan

home > search >

Intergranular embrittlement of iron by phosphorus segregation: an atomistic simulation

Author:
Ko, Won-Seok   Jeon, Jong Bae   Lee, Chang-Hoon   Lee, Jae-Kon   Lee, Byeong-Joo  


Journal:
Modelling and Simulation in Materials Science and Engineering


Issue Date:
2013


Abstract(summary):

The intergranular embrittlement in bcc iron by the grain boundary (GB) segregation of phosphorus is investigated using an atomistic simulation. The inhibition of the nucleation of dislocations near the crack tip is found to be the governing mechanism of the intergranular embrittlement in phosphorus-containing iron, in contrast to the conventional reasoning that focuses on the GB decohesion. The correlation between the nucleation of dislocations and dislocation transfer across a GB (GB strengthening) is discussed. Experimental evidence and supplementary simulation results that support the new finding in terms of the GB strengthening are also demonstrated.


Page:
025012


VIEW PDF

The preview is over

If you wish to continue, please create your membership or download this.

Create Membership

Similar Literature

Submit Feedback

This function is a member function, members do not limit the number of downloads