Creat membership Creat membership
Sign in

Forgot password?

Confirm
  • Forgot password?
    Sign Up
  • Confirm
    Sign In
Creat membership Creat membership
Sign in

Forgot password?

Confirm
  • Forgot password?
    Sign Up
  • Confirm
    Sign In
Collection
For ¥0.57 per day, unlimited downloads CREATE MEMBERSHIP Download

toTop

If you have any feedback, Please follow the official account to submit feedback.

Turn on your phone and scan

home > search >

Numerical study of underwater shock wave by a modified method of characteristics

Author:
Li, Xiaojie   Zhang, Chengjiao   Wang, Xiaohong   Hu, Xiaofei  


Journal:
Journal of Applied Physics


Issue Date:
2014


Abstract(summary):

This paper introduces a modified method of characteristics as well as its application to simulation of a 1D spherical underwater explosion. To check the performance of the modified method, corresponding codes for computer calculation are developed to simulate the underwater explosion problem which is a typical isentropic flow problem. In applying the modified method, shock wave is calculated based on the Rankine-Hugoniot conservation relations. Artificial viscosity is not used in the simulation, and thus the corresponding influence of artificial viscosity is not introduced into the simulation. The work is mainly focused on underwater shock wave and secondary shock wave. The results simulated with the modified method are compared with other results from experiment and AUTODYN software, and the comparisons show that the modified method results are coincident with the experimental results in acceptable accuracy. Compared with the AUTODYN results, the modified method results are consistent with the experimental results better in far field. The formation and propagation of the secondary shock and the position of the gas-water interface are well captured, and the variations in flow field can be obtained. On the basis of the comparisons, it can be demonstrated that the modified method of characteristics can be applied to the simulation of 1D isentropic flow problems effectively.


Page:
104905


VIEW PDF

The preview is over

If you wish to continue, please create your membership or download this.

Create Membership

Similar Literature

Submit Feedback

This function is a member function, members do not limit the number of downloads