Creat membership Creat membership
Sign in

Forgot password?

Confirm
  • Forgot password?
    Sign Up
  • Confirm
    Sign In
Creat membership Creat membership
Sign in

Forgot password?

Confirm
  • Forgot password?
    Sign Up
  • Confirm
    Sign In
Collection
For ¥0.57 per day, unlimited downloads CREATE MEMBERSHIP Download

toTop

If you have any feedback, Please follow the official account to submit feedback.

Turn on your phone and scan

home > search >

Conformal antenna array for ultra-wideband direction-of-arrival estimation

Author:
Liberal, I?igo   Caratelli, Diego   Yarovoy, Alexander  


Journal:
International Journal of Microwave and Wireless Technologies


Issue Date:
2011


Abstract(summary):

The design and full-wave analysis of an antenna system for ultra-wideband radio direction finding applications is presented. The elliptical dipole antenna is selected as antenna element due to its robust circuital and radiation properties. The influence of the conformal deformation on the antenna performance has been studied in details. A suitable radome is designed to enhance the antenna front-to-back radiation ratio, as well as to increase the environmental durability of the structure. The considered antennas are optimized for their adoption in two different sub-arrays covering the [250, 950] MHz and [0.9, 3.3] GHz frequency bands, respectively. A uniform circular array (UCA) with five elements is used for the array topology. The full-wave analysis of the whole array structure is carried out in order to evaluate the coupling between the antenna elements. In particular, a novel calibration technique is developed in order to compensate for the mutual coupling between the array elements, possible variations in the antenna characteristics, and the effects of the array bearing structure. The performance of the designed array in terms of direction-of-arrival estimation is thoroughly analyzed and discussed.


Page:
439-450


VIEW PDF

The preview is over

If you wish to continue, please create your membership or download this.

Create Membership

Similar Literature

Submit Feedback

This function is a member function, members do not limit the number of downloads