Creat membership Creat membership
Sign in

Forgot password?

Confirm
  • Forgot password?
    Sign Up
  • Confirm
    Sign In
Creat membership Creat membership
Sign in

Forgot password?

Confirm
  • Forgot password?
    Sign Up
  • Confirm
    Sign In
Collection

toTop

If you have any feedback, Please follow the official account to submit feedback.

Turn on your phone and scan

home > search >

Origin of unrealistic blunting during atomistic fracture simulations based on MEAM potentials

Author:
Ko, Won-Seok   Lee, Byeong-Joo  


Journal:
Philosophical Magazine


Issue Date:
2014


Abstract(summary):

Atomistic simulations based on interatomic potentials have frequently failed to correctly reproduce the brittle fracture of materials, showing an unrealistic blunting. We analyse the origin of the unrealistic blunting during atomistic simulations by modified embedded-atom method (MEAM) potentials for experimentally well-known brittle materials such as bcc tungsten and diamond silicon. The radial cut-off which has been thought to give no influence on MEAM calculations is found to have a decisive effect on the crack propagation behaviour. Extending both cut-off distance and truncation range can prevent the unrealistic blunting, reproducing many well-known fracture behaviour which have been difficult to reproduce. The result provides a guideline for future atomistic simulations that focus on various fracture-related phenomena including the failure of metallic-covalent bonding material systems using MEAM potentials.


Page:
1745-1753


Similar Literature

Submit Feedback

This function is a member function, members do not limit the number of downloads