Creat membership Creat membership
Sign in

Forgot password?

Confirm
  • Forgot password?
    Sign Up
  • Confirm
    Sign In
Creat membership Creat membership
Sign in

Forgot password?

Confirm
  • Forgot password?
    Sign Up
  • Confirm
    Sign In
Collection
For ¥0.57 per day, unlimited downloads CREATE MEMBERSHIP Download

toTop

If you have any feedback, Please follow the official account to submit feedback.

Turn on your phone and scan

home > search >

Monolithic Low-EMI CMOS DC–DC Boost Converter for Portable Applications

Author:
Liou, Wan-Rone   Yeh, Mei-Ling   Chen, Ping-Shin   Tseng, Chun-Chang   Huang, Tang-Yu   Lin, Shu-Chia   Lin, Cheng-Yu   Sun, Chih-Hsiang  


Journal:
IEEE Transactions on Very Large Scale Integration (VLSI) Systems


Issue Date:
2014


Abstract(summary):

This brief presents the design of a novel low-electromagnetic interference DC-DC step-up (boost) switching converter for portable applications. The converter can switch between pulsewidth modulation and pulse-frequency modulation modes for different load conditions, and uses a new ultralow-current spread spectrum frequency modulator to reduce the harmonic noise peak. The stability of the converter system with a spread spectrum frequency modulator is first analyzed in this brief. The harmonic peak reduction for the switching frequency and the second harmonic is 14 and 18 dB, respectively. A new two-stage soft-start circuit is also implemented to greatly reduce the start-up current. The start-up current of the boost converter is effectively limited below 500 mA. This brief also investigates the effects of the spread spectrum on conversion efficiency and output ripple voltage. About 93% maximum conversion efficiency can be reached for both operation modes. The chip was fabricated using a TSMC 2P4M 0.35-mu m CMOS process.


Page:
420-424


VIEW PDF

The preview is over

If you wish to continue, please create your membership or download this.

Create Membership

Similar Literature

Submit Feedback

This function is a member function, members do not limit the number of downloads