Creat membership Creat membership
Sign in

Forgot password?

Confirm
  • Forgot password?
    Sign Up
  • Confirm
    Sign In
Creat membership Creat membership
Sign in

Forgot password?

Confirm
  • Forgot password?
    Sign Up
  • Confirm
    Sign In
Collection
For ¥0.57 per day, unlimited downloads CREATE MEMBERSHIP Download

toTop

If you have any feedback, Please follow the official account to submit feedback.

Turn on your phone and scan

home > search >

Flow Maldistribution and Performance Deteriorations in Membrane-Based Heat and Mass Exchangers

Author:
Zhang   Li-Zhi  


Journal:
Journal of Heat Transfer


Issue Date:
2009


Abstract(summary):

Heat mass exchangers are crucial for the prevention of epidemic respiratory diseases such as H1N1 (swine flu). The flow maldistribution affects their performance seriously. The flow maldistribution and the consequent performance deteriorations in heat and mass exchangers are investigated. The focus is on moisture effectiveness deteriorations. As a first step, a computational fluid dynamics (CFD) code is used to calculate the flow distribution, by treating the plate-fin core as a porous medium. Then a coupled heat and moisture transfer model between the two air flows in the plate-fin channels is set up with slug flow assumption in the channels. Using the CFD predicted core face flow distribution data, the sensible heat and moisture exchange effectiveness and the performance deterioration factors are calculated with finite difference scheme. The results indicate that under current core to whole exchanger pressure drop ratio, when the channel pitch is below 2.0 mm, the flow distribution is quite homogeneous and the sensible and latent performance deteriorations due to flow maldistribution can be neglected. However, when the channel pitch is larger than 2 mm, the maldistribution is quite large and a 10-15% thermal deterioration factor and a 20-25% latent deterioration factor could be found. Mass transfer deteriorates much more than heat transfer does due to larger mass transfer resistance through membranes.


Page:
111801


VIEW PDF

The preview is over

If you wish to continue, please create your membership or download this.

Create Membership

Similar Literature

Submit Feedback

This function is a member function, members do not limit the number of downloads