Creat membership Creat membership
Sign in

Forgot password?

Confirm
  • Forgot password?
    Sign Up
  • Confirm
    Sign In
Creat membership Creat membership
Sign in

Forgot password?

Confirm
  • Forgot password?
    Sign Up
  • Confirm
    Sign In
Collection

toTop

If you have any feedback, Please follow the official account to submit feedback.

Turn on your phone and scan

home > search >

Extremely Small Two-Element Monopole Antenna for HF Band Applications

Author:
Oh, Jungsuek   Choi, Jihun   Dagefu, Fikadu T.   Sarabandi, Kamal  


Journal:
IEEE Transactions on Antennas and Propagation


Issue Date:
2013


Abstract(summary):

This paper presents a novel antenna architecture to achieve an extremely small form factor for HF band applications. The approach is based on manipulating the topology of a short monopole antenna without utilizing a high index material. A new architecture incorporating two radiating elements is configured, which allows significant gain enhancement. It is shown that such architecture can render a miniaturized HF antenna on air substrate having lateral and height dimensions as small as 0.0115lambda 0 times 0.0115lambda 0 times 0.0038lambda 0 (150 mmtimes mm times 50 mm for operation at 22.9 MHz). It is found that the measured gain of such architecture can be as high as - 18.1 dBi, which is 16.7 dB higher than a reference inverted-F antenna realized on a high index material (epsilon R = 10.2) having exactly the same dimensions. The proposed antenna architecture is composed of two in-phase radiating vertical elements connected to two inductors between which a capacitive top load is connected to achieve the desired resonant condition. The two vertical elements act effectively as a monopole having increased height. It is also shown that the gain of the antenna can be increased monotonically by increasing the quality factor ( Q) of the phase shifter. High Q air-core inductors that can be accommodated in electrically small monopole antenna are designed and incorporated in the phase shifter to achieve a gain value of - 17.9 dBi. Details about the proposed design approach, simulation, and measurement results are discussed.


Page:
2991-2999


Similar Literature

Submit Feedback

This function is a member function, members do not limit the number of downloads