Creat membership Creat membership
Sign in

Forgot password?

Confirm
  • Forgot password?
    Sign Up
  • Confirm
    Sign In
Creat membership Creat membership
Sign in

Forgot password?

Confirm
  • Forgot password?
    Sign Up
  • Confirm
    Sign In
Collection
For ¥0.57 per day, unlimited downloads CREATE MEMBERSHIP Download

toTop

If you have any feedback, Please follow the official account to submit feedback.

Turn on your phone and scan

home > search >

Atomistic Model of Uranium

Author:
Li, Ru-song   He, Bing   Zhang, Quan-hu  


Journal:
Chinese Journal of Chemical Physics


Issue Date:
2011


Abstract(summary):

The electronic state and potential data of U(2) molecules are performed by first principle calculations with B3LYP hybrid exchange-correlation functional, the valence electrons of U atom are treated with the (5s4p3d4f)/[3s3p2d2f] contraction basis sets, and the cores are approximated with the relativistic effective core potential. The results show that the ground electronic state is X(9)Sigma(+)(g). The pair potential data are fitted with a Murrell-Sorbie analytical potential function. The U-U embedded atom method (EAM) interatomic potential is determined based on the generalized gradient approximation calculation within the framework of the density functional theory using Perdew-Burke-Ernzerhof exchange-correlation functional at the spin-polarized level. The physical properties, such as the cohesive energy, the lattice constant, the bulk modulus, the shear modulus, the sc/fcc relative energy, the hcp/fcc relative energy, the shear modulus and the monovacancy formation energy are used to evaluate the EAM potential parameters. The U-U pair potential determined by the first principle calculations is in agreement with that defined by the EAM potential parameters. The EAM calculated formation energy of the monovacancy in the fcc structure is also found to be in close agreement with DFT calculation.


Page:
405-411


VIEW PDF

The preview is over

If you wish to continue, please create your membership or download this.

Create Membership

Similar Literature

Submit Feedback

This function is a member function, members do not limit the number of downloads