Creat membership Creat membership
Sign in

Forgot password?

Confirm
  • Forgot password?
    Sign Up
  • Confirm
    Sign In
Creat membership Creat membership
Sign in

Forgot password?

Confirm
  • Forgot password?
    Sign Up
  • Confirm
    Sign In
Collection
For ¥0.57 per day, unlimited downloads CREATE MEMBERSHIP Download

toTop

If you have any feedback, Please follow the official account to submit feedback.

Turn on your phone and scan

home > search >

Geological and geomorphological characteristics of landslides triggered by the 2004 Mid Niigta prefecture earthquake in Japan

Author:
Masahiro Chigira and Hiroshi Yagi  


Journal:
Engineering Geology


Issue Date:
2006


Abstract(summary):

The 2004 Mid Niigta prefecture earthquake (MJMA 6.8) triggered more than one thousand landslides in the Miocene to Quaternary sedimentary rocks in Japan. The most common landslides were shallow disrupted landslides on steep slopes, which has been common in many previous disastrous earthquakes in the world. The Mid Niigta prefecture earthquake also triggered more than one hundred deep landslides, providing valuable information on the conditions for their occurrence. A field investigation and the interpretation of aerial photographs taken before and after the earthquake suggest that reactivation of existing landslides and undercutting of slopes are the most important factors for deep landslides to be triggered by earthquakes. In addition, planar sliding surfaces seem to be essential for the generation of catastrophic landslides triggered by this earthquake. Planar bedding–parallel sliding surfaces were formed at the boundary between the overlying permeable sandstone and underlying siltstone or along the bedding planes of alternating beds of sandstone and siltstone. Sliding surfaces along the slope-parallel oxidation front were formed in the area of black mudstone. New landslides (rockslide-avalanches) occurred with the sliding surfaces in a several-cm thick tuff interbedded in siltstone. One rockslide-avalanche occurred on a slope where buckling deformation preceded the earthquake. Gentle valley bottom sediments were mobilized in many locations, probably because they were saturated and partial liquefaction had occurred due to the earthquake shaking.


Page:
202-221


VIEW PDF

The preview is over

If you wish to continue, please create your membership or download this.

Create Membership

Similar Literature

Submit Feedback

This function is a member function, members do not limit the number of downloads