Creat membership Creat membership
Sign in

Forgot password?

Confirm
  • Forgot password?
    Sign Up
  • Confirm
    Sign In
Creat membership Creat membership
Sign in

Forgot password?

Confirm
  • Forgot password?
    Sign Up
  • Confirm
    Sign In
Collection
For ¥0.57 per day, unlimited downloads CREATE MEMBERSHIP Download

toTop

If you have any feedback, Please follow the official account to submit feedback.

Turn on your phone and scan

home > search >

Study of Sb substitution for Pr in the Pr(0.67)Ba(0.33)MnO(3) system

Author:
Garg, K. B.  Nordblad, P.  Heinonen, M.  Panwar, N.  Sen, V.  Bondino, F.  Magnano, E.  Carleschi, E.  Parmigiani, F.  Agarwal, S. K.  


Journal:
JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS


Issue Date:
2009


Abstract(summary):

We study the effect of Sb substitution for Pr in the hole-doped system Pr(0.67)Ba(0.33)MnO(3) (PBMO) for different doping levels of Sb. The two electrical resistivity transitions observed in the pristine sample PBMO shift to low temperatures on Sb doping with an overall increase in the electrical resistivity. The significant local lattice distortion and the grain boundary effects caused by the large cation size mismatch between Pr(3+) and Sb(3+) suppresses the double-exchange (DE) interaction and enhances the super-exchange (SE) interaction. The compounds show a significant and increasing value of magnetoresistance at temperatures below the Curie temperature, not expected from the DE model. The Curie temperature decreases with increase in Sb content but the saturation magnetization is little affected by the substitution. The spins, however, stay well aligned in the low-temperature regime. Our X-ray near-edge absorption spectra (XANES) and core level photoemission (XPS) data clearly show the Sb cation to be in +3 state and rule out any possibility of e-doping in our compounds. (C) 2008 Elsevier B. V. All rights reserved.


Page:
305---311


VIEW PDF

The preview is over

If you wish to continue, please create your membership or download this.

Create Membership

Similar Literature

Submit Feedback

This function is a member function, members do not limit the number of downloads