Creat membership Creat membership
Sign in

Forgot password?

Confirm
  • Forgot password?
    Sign Up
  • Confirm
    Sign In
Creat membership Creat membership
Sign in

Forgot password?

Confirm
  • Forgot password?
    Sign Up
  • Confirm
    Sign In
Collection

toTop

If you have any feedback, Please follow the official account to submit feedback.

Turn on your phone and scan

home > search >

Base-pair interactions in the gas-phase proton-bonded complexes of C(+)G and C(+)GC

Author:
Han, Sang Yun  Lee, Sang Hak  Chung, Jayong  Bin Oh, Han  


Journal:
JOURNAL OF CHEMICAL PHYSICS


Issue Date:
2007


Abstract(summary):

Interactions involved in the formation of gas-phase proton-bonded molecular complexes of cytosine (C) and guanine (G) were theoretically investigated for the case of C(+)G and C(+)GC using B3LYP density functional theory. In this study, particular focus was on the dimeric interaction of proton-bonded C(+)G, where a proton bond and a hydrogen bond are cooperatively involved. The dimer interaction energy in terms of dissociation energy (D(e)) was predicted to be 41.8 kcal/mol. The lowest (frozen) energy structure for the C(+)G dimeric complex was found to be CH(+)center dot G rather than C center dot H(+)G in spite of the lower proton affinity of the cytosine moiety, which was more stable by 3.3 kcal/mol. The predicted harmonic vibrational frequencies and bond lengths suggest that the combined contributions of proton and hydrogen bonding may determine the resultant stability of each complex structure. In contrast to the dimer case, in the case of the isolated C(+)GC triplet, the two minimum energy structures of CH(+)center dot GC and C center dot H(+)GC were predicted to be almost equivalent in total energy. The dissociation energy (D(e)) for the C(+)G pairing in the C(+)GC triplet was 43.7 kcal/mol. Other energetics are also reported. As for the proton-transfer reaction in the proton-bond axis, the forward proton-transfer barriers for the dimer and trimer complexes were also predicted to be very low, 3.6 and 1.5 kcal/mol (Delta E(e)(PT)), respectively. (c) 2007 American Institute of Physics.


Similar Literature

Submit Feedback

This function is a member function, members do not limit the number of downloads