Creat membership Creat membership
Sign in

Forgot password?

Confirm
  • Forgot password?
    Sign Up
  • Confirm
    Sign In
Creat membership Creat membership
Sign in

Forgot password?

Confirm
  • Forgot password?
    Sign Up
  • Confirm
    Sign In
Collection

toTop

If you have any feedback, Please follow the official account to submit feedback.

Turn on your phone and scan

home > search >

Decomposition Reactions and Reversibility of the LiBH(4)-Ca(BH(4))(2) Composite

Author:
Lee, Ji Youn  Ravnsbaek, Dorthe  Lee, Young-Su  Kim, Yoonyoung  Cerenius, Yngve  Shim, Jae-Hyeok  Jensen, Torben R.  Hur, Nam Hwi  Cho, Young Whan  


Journal:
JOURNAL OF PHYSICAL CHEMISTRY C


Issue Date:
2009


Abstract(summary):

LiBH(4) is one of the promising candidates for hydrogen storage materials because of its high gravimetric and volumetric hydrogen capacity. However, its high dehydrogenation temperature and limited reversibility has been a hurdle for its use in real applications. In an effort to overcome this barrier and to adjust the thermal stability, we make a composite system LiBH(4)-Ca(BH(4))(2). In order to fully characterize this composite system we study xLiBH(4) + (1 - x)Ca(BH(4))(2) for several x values between 0 and 1, using differential scanning calorimetry, in situ synchrotron X-ray diffraction, thermogravimetric analysis, and mass spectrometry. Interestingly, this composite undergoes a eutectic melting at ca. 200 degrees C in a wide composition range, and the eutectic composition lies between x = 0.6 and 0.8. The decomposition characteristics and the hydrogen capacity of this composite vary with x, and the decomposition temperature is lower than both the pure LiBH(4) and Ca(BH(4))(2) at intermediate conpositions, for example, for x approximate to 0.4, decomposition is finished below 400 degrees C releasing about 10 wt % of hydrogen. Partial reversibility of this system was also confirmed for the first time for the case of if mixed borohydride composite.


Page:
15080---15086


Similar Literature

Submit Feedback

This function is a member function, members do not limit the number of downloads