Creat membership Creat membership
Sign in

Forgot password?

Confirm
  • Forgot password?
    Sign Up
  • Confirm
    Sign In
Creat membership Creat membership
Sign in

Forgot password?

Confirm
  • Forgot password?
    Sign Up
  • Confirm
    Sign In
Collection
For ¥0.57 per day, unlimited downloads CREATE MEMBERSHIP Download

toTop

If you have any feedback, Please follow the official account to submit feedback.

Turn on your phone and scan

home > search >

A faster algorithm for simultaneous alignment and folding of RNA.

Journal:
Journal of computational biology : a journal of computational molecular cell biology


Issue Date:
2010


Abstract(summary):

The current pairwise RNA (secondary) structural alignment algorithms are based on Sankoff's dynamic programming algorithm from 1985. Sankoff's algorithm requires O(N(6)) time and O(N(4)) space, where N denotes the length of the compared sequences, and thus its applicability is very limited. The current literature offers many heuristics for speeding up Sankoff's alignment process, some making restrictive assumptions on the length or the shape of the RNA substructures. We show how to speed up Sankoff's algorithm in practice via non-heuristic methods, without compromising optimality. Our analysis shows that the expected time complexity of the new algorithm is O(N(4)sigma(N)), where sigma(N) converges to O(N), assuming a standard polymer folding model which was supported by experimental analysis. Hence, our algorithm speeds up Sankoff's algorithm by a linear factor on average. In simulations, our algorithm speeds up computation by a factor of 3-12 for sequences of length 25-250. Code and data sets are available, upon request.


VIEW PDF

The preview is over

If you wish to continue, please create your membership or download this.

Create Membership

Similar Literature

Submit Feedback

This function is a member function, members do not limit the number of downloads