Creat membership Creat membership
Sign in

Forgot password?

Confirm
  • Forgot password?
    Sign Up
  • Confirm
    Sign In
Creat membership Creat membership
Sign in

Forgot password?

Confirm
  • Forgot password?
    Sign Up
  • Confirm
    Sign In
Collection
For ¥0.57 per day, unlimited downloads CREATE MEMBERSHIP Download

toTop

If you have any feedback, Please follow the official account to submit feedback.

Turn on your phone and scan

home > search >

Integration of silicon photonics into electronic processes

Author:
Orcutt, Jason S.  Ram, Rajeev J.  Stojanovic, Vladimir  


Journal:
SILICON PHOTONICS VIII


Issue Date:
2013


Abstract(summary):

Front-end monolithic integration has enabled photonic devices to be fabricated in bulk and thin-SOI CMOS as well as DRAM electronics processes. Utilizing the CMOS generic process model, integration was accomplished on multi-project wafers that were shared by standard electronic customers without requiring in-foundry process changes. Simple die or wafer-level post-processing has enabled low-loss waveguides by the removal of the substrate within photonic regions. The custom-process model of the DRAM industry instead enabled optimization of the photonic device fabrication process and the potential elimination of post-processing requirements. Integrated single-crystalline silicon waveguide loss of similar to 3 dB/cm has been achieved within a 45nm thin-SOI CMOS process that is currently used to manufacture microprocessors [1]. A fully monolithic photonic transmitter including a pseudo-random bit sequence (PRBS) generating digital backend was also demonstrated within this process [1]. The constraints of zero-change integration have limited achieved polysilicon waveguide loss to similar to 50 dB/cm with commercially available bulk CMOS processes [2]. Custom polysilicon deposition and processing conditions available for DRAM integration have also led to the demonstration of similar to 6 dB/cm loss waveguides suitable for integration within electronics processes utilizing bulk silicon starting substrates [3]. An overview of required process features, device design guidelines and integration methodology tradeoffs will be presented. Relevant device metrics of area and energy efficiency as well as achievable photonic device performance will be presented within the context of monolithic front-end integration within state-of-the-art electronics processes. Applications of this research towards the implementation of a computer system utilizing photonic interconnect for core-to-memory communication will also be discussed.


VIEW PDF

The preview is over

If you wish to continue, please create your membership or download this.

Create Membership

Similar Literature

Submit Feedback

This function is a member function, members do not limit the number of downloads