Creat membership Creat membership
Sign in

Forgot password?

Confirm
  • Forgot password?
    Sign Up
  • Confirm
    Sign In
Creat membership Creat membership
Sign in

Forgot password?

Confirm
  • Forgot password?
    Sign Up
  • Confirm
    Sign In
Collection
For ¥0.57 per day, unlimited downloads CREATE MEMBERSHIP Download

toTop

If you have any feedback, Please follow the official account to submit feedback.

Turn on your phone and scan

home > search >

TRAJECTORY ANALYSIS FOR THE NUCLEUS AND DUST OF COMET C/2013 A1 (SIDING SPRING)

Author:
Farnocchia, Davide  Chesley, Steven R.  Chodas, Paul W.  Tricarico, Pasquale  Kelley, Michael S. P.  Farnham, Tony L.  


Journal:
ASTROPHYSICAL JOURNAL


Issue Date:
2014


Abstract(summary):

Comet C/2013 A1 (Siding Spring) will experience a high velocity encounter with Mars on 2014 October 19 at a distance of 135,000 km +/- 5000 km from the planet center. We present a comprehensive analysis of the trajectory of both the comet nucleus and the dust tail. The nucleus of C/2013 A1 cannot impact on Mars even in the case of unexpectedly large nongravitational perturbations. Furthermore, we compute the required ejection velocities for the dust grains of the tail to reach Mars as a function of particle radius and density and heliocentric distance of the ejection. A comparison between our results and the most current modeling of the ejection velocities suggests that impacts are possible only for millimeter to centimeter size particles released more than 13AU from the Sun. However, this level of cometary activity that far from the Sun is considered extremely unlikely. The arrival time of these particles spans a 20-minute time interval centered at 2014 October 19 at 20: 09 TDB, i.e., around the time that Mars crosses the orbital plane of C/2013 A1. Ejection velocities larger than currently estimated by a factor >2 would allow impacts for smaller particles ejected as close as 3AU from the Sun. These particles would reach Mars from 19:13 TDB to 20:40 TDB.


VIEW PDF

The preview is over

If you wish to continue, please create your membership or download this.

Create Membership

Similar Literature

Submit Feedback

This function is a member function, members do not limit the number of downloads