Creat membership Creat membership
Sign in

Forgot password?

Confirm
  • Forgot password?
    Sign Up
  • Confirm
    Sign In
Creat membership Creat membership
Sign in

Forgot password?

Confirm
  • Forgot password?
    Sign Up
  • Confirm
    Sign In
Collection
For ¥0.57 per day, unlimited downloads CREATE MEMBERSHIP Download

toTop

If you have any feedback, Please follow the official account to submit feedback.

Turn on your phone and scan

home > search >

A cumulative not-first/not-last filtering algorithm in O(n (2)log(n))

Author:
Kameugne, Roger  Fotso, Laure Pauline  


Journal:
INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS


Issue Date:
2013


Abstract(summary):

In cumulative and disjunctive constraint-based scheduling, the resource constraint is enforced by several filtering rules. Among these rules, we have (extended) edge-finding and not-first/not-last rules. The not-first/not-last rule detects tasks that cannot run first/last relatively to a set of tasks and prunes their time bounds. In this paper, it is presented a sound O (n (2) log n) algorithm for the cumulative not-first/not-last rule where n is the number of tasks. This algorithm reaches the same fix point as previous not-first/not-last algorithms, although it may take additional iterations to do so. The worst case complexity of this new algorithm for the maximal adjustment is the same as our previous complete O (n (2)|H| log n) not-first/not-last algorithm [7] where |H| is the maximum between the number of distinct earliest completion and latest start times of tasks. But, experimental results on benchmarks from the Project Scheduling Problem Library (PSPLib) and the Baptiste and Le Pape data set (BL) suggest that the new not-first/not-last algorithm has a substantially reduced runtime. Furthermore, the results demonstrate that in practice the new algorithm rarely requires more propagations than previous not-first/not-last algorithms.


Page:
95---115


VIEW PDF

The preview is over

If you wish to continue, please create your membership or download this.

Create Membership

Similar Literature

Submit Feedback

This function is a member function, members do not limit the number of downloads